Seroprevalence of *Toxoplasma gondii* in North-eastern Atlantic harbor seal (*Phoca vitulina vitulina*) and grey seal (*Halichoerus grypus*)

A R T I C L E I N F O

Article history:
Received 25 May 2010
Received in revised form 3 December 2010
Accepted 27 January 2011

Keywords:
Grey seal
Halichoerus grypus
Harbor seal
Toxoplasma gondii
Phoca vitulina

A B S T R A C T

Antibodies to *Toxoplasma gondii* were determined in serum samples from 47 grey seals (*Halichoerus grypus*) and 56 harbor seals (*Phoca vitulina vitulina*) from the Atlantic coasts of United Kingdom and France. Antibodies to *T. gondii* assayed by the modified agglutination test (MAT) were found in 14 (13.6%; IC95%: 7.0–20.2) of 103 seals tested, with titres of 1:25 in 13 seals and 1:50 in 1 seal. Seroprevalence against *T. gondii* (MAT 1:25 or higher) was significantly higher in grey seals (23.4%) compared to harbor seals (5.4%). No significant differences were found between seroprevalence against *T. gondii* and sex, age or geographical locations. These results show natural exposure of European harbor and grey seals to *T. gondii* oocysts in the Atlantic Ocean. To the best of our knowledge, this is the first serological survey of *T. gondii* in European grey and harbor seals.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Toxoplasma gondii is an intracellular apicomplexan protozoan of worldwide distribution. It causes important clinical disease in many species of animals, including humans (Dubey, 2009). *T. gondii* can infect many species of domestic and wild mammals, with felids as definitive hosts (reviewed by Dubey, 2009). *T. gondii* is recognized as an important pathogen in marine mammals (Dubey, 2009). *T. gondii* infection is considered to be a major cause of mortality in sea otters (*Enhydra lutris*) (Cole et al., 2000; Kreuder et al., 2003; Thomas et al., 2007) and fatal toxoplasmosis has been diagnosed in the Pacific harbor seal (*Phoca vitulina richardsi*) (Van Pelt and Dieterich, 1973; Miller et al., 2001). Numerous serologic surveys to determine the seroprevalence of antibodies against *T. gondii* have been carried out in seals (Fam. Phocidae) and *T. gondii* antibodies have been found in several species such as Pacific harbor seal (Lambourn et al., 2001; Dubey et al., 2003), western Atlantic harbor seal (*Phoca vitulina concolor*) (Measures et al., 2004), kuir harbor seal (*Phoca vitulina stejnegeri*) (Fujii et al., 2007), ringed seal (*Phoca hispida*), bearded seal (*Erignathus barbatus*) and spotted seal (*Phoca largha*) (Dubey et al., 2003), grey seal (*Halichoerus grypus*) and hooded seal (*Cystophora cristata*) (Measures et al., 2004). and worldwide reports in these animals were recently reviewed (Dubey, 2009). Compared to these reports, antibodies against *T. gondii* were not found in harp seal (*Phoca groenlandica*), ringed seal (*P. hispida*) and hooded seal (*C.*

* Corresponding author. Tel.: +34 93 581 2006; fax: +34 93 581 2006. E-mail addresses: Sonia.Almeria@uab.cat, Sonia.Almeria@uab.es (S. Almería).
cristata) in the Northeast Atlantic Ocean (Oksanen et al., 1998). To our knowledge, no serologic studies have been performed in eastern-Atlantic harbor seal (Phoca vitulina vitulina) and European grey seal (H. grypus) populations. These species are resident year-round, and are generally coastal (harbor seals) or slightly offshore (grey seals) in foraging behaviour, both frequenting and hauling out inshore.

Harbor seal (P. v. vitulina) and grey seal (H. grypus) are listed on the International Union for Conservation of Nature (IUCN) Red List of Threatened Species (IUCN, 2010) as “least concern”. However, grey seal populations are still below the estimated populations one hundred years ago in the North-eastern Atlantic (Harding and Härkönen, 1999) and harbor seal population dynamics within regional subpopulations vary dramatically (Härkönen et al., 2006). In 1988 more than 20,000 harbor seals were estimated to have died from a phocine distemper virus (morbillivirus) epidemic in European waters (Dietz et al., 1989; Reijnders, 1989). A similar outbreak in 2002 killed approximately 30,000 harbor seal individuals (Härkönen et al., 2006). Information about seroprevalence of T. gondii, which could be cause of disease in marine mammals, is therefore of importance for the conservation and management of these seal species.

The objective of this study was to determine the seroprevalence of T. gondii in North-eastern Atlantic populations of grey and harbor seals inhabiting the North Sea and adjacent waters, two of the most common Phocidae species in all the North Atlantic Ocean.

2. Material and methods

Sera from grey seals (n = 47) and harbor seals (n = 56) were collected from animals captured live and released from Atlantic coasts of Scotland and France between 1998 and 2004. Grey seals sampled around the coast of UK were from Aberdeens sands (n = 5) (56° 44′ N, −02° 76′E), the Farne Islands (n = 8) (55° 63′N, −01° 63′E) and Wales & Dee estuary (n = 19) (53° 32′N, −03° 15′E) and the Molene population (n = 15) (48° 78′N, −03° 61′E) from North-west France. The harbor seal samples were all collected from UK: St. Andrews Bay (n = 18) (56° 35′N, −02° 82′E), the Moray Firth (n = 15) (57° 65′N, −04° 03′E), Orkney (n = 18) (58° 96′N, −02° 95′E), and Islay and Jura (n = 5) (55° 89′N, −05° 89′E) from Great Britain. Data were collected regarding sex of each animal, age of the animals, geographic area and year of sampling. Age of the animals was recorded in relation of their weight and length (Thompson and Härkönen, 2008a,b). All animals were sampled under UK Home Office Project and Personal Licences as issued to the Sea Mammal Research Unit under the UK Animal (Scientific Procedures) Act, 1986.

Blood was collected from the extradural vein using the Vacutainer system (Becton Dickinson, Oxford, UK) into serum collection tubes and centrifuged at 1200 rpm for 15 min. Separated sera were then stored at −20 °C until analyzed.

Separated sera were examined by the modified agglutination test (MAT) to detect antibodies against T. gondii as described previously (Dubey and Desmonts, 1987). Sera were tested at 1:25, 1:50, 1:100 and 1:500 dilutions. Commercial positive control (Toxotrol-A, Biomerieux, France) diluted from 1:25 to 1:3200 (with a minimum titre of 1:200) was included in each test. Negative controls were also included in all tests. Titres of 1:25 or higher were considered positive and those with equivocal results were re-examined. The utility of this method in seals has been demonstrated with animals experimentally infected with T. gondii (Gajadhar et al., 2004).

Data were collected regarding sex and age of each animal (adults, sub-adults or pups), geographic area and year of sampling. No age data were recorded for 6 seals. Associations between serological results and independent variables such as species, sex, age, geographic area and year of sampling were analyzed using a Pearson’s chi-square test. When observations per category were less than six, Fisher’s exact test was used. Differences between variables were analyzed by Bonferroni or Tukey tests. Differences were considered statistically significant when P-value < 0.05. Statistical analyses were performed using SPSS 15.0 (Statistical Package for Social Sciences (SPSS) Inc., Chicago, IL, USA).

3. Results

Antibodies (MAT ≥ 1:25) against T. gondii were found in 14 (13.6%; IC95%: 7.0–20.2) of 103 seals tested, with titres of 1:25 in 13 seals (92.9%) and 1:50 in 1 seal (7.1%). Significantly higher seroprevalence (P = 0.01) was observed in grey seals (11 of 47, 23.4%) compared to harbor seals (3 of 56, 5.4%) (Table 1). No statistically significant differences were found between prevalence of infection and sex (10 of 47 females, 21.3%, and 4 of 56 males, 7.1%), age (7 of 43 adults, 16.3%, 5 of 40 sub-adults, 12.5% and 1 of 12 pups, 7.1%) and geographical location (Table 1). Seals with positive antibody titres against T. gondii were detected in all the studied areas with exception of harbor seals from Islay and Jura (West coast of Scotland). Although no statistically significant differences were observed among years of sampling, it was interesting to observe an increased seroprevalence in grey seals from Molene sampled in 2002 (4 of 9 sampled, 44.4%) compared to those sampled in 1999 (0 of 6 sampled, 0%) (P = 0.1).

4. Discussion

Seroprevalence studies of T. gondii antibodies in pinnipeds have been reported in several species but in a few restricted geographical areas: North America, Hawaii

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Seroprevalence of T. gondii in North-eastern Atlantic harbor seal (Phoca vitulina vitulina) and grey seal (Halichoerus grypus) populations.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
<td>Area of study</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>Grey seal (H. grypus)</td>
<td>Abertay Sands</td>
</tr>
<tr>
<td></td>
<td>Molene</td>
</tr>
<tr>
<td></td>
<td>Farne Islands</td>
</tr>
<tr>
<td></td>
<td>Wales & Dee estuary</td>
</tr>
<tr>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>Harbor seal (P. vitulina)</td>
<td>St. Andrews bay</td>
</tr>
<tr>
<td></td>
<td>Moray Firth</td>
</tr>
<tr>
<td></td>
<td>Orkney</td>
</tr>
<tr>
<td></td>
<td>Islay and Jura</td>
</tr>
<tr>
<td></td>
<td>Total</td>
</tr>
</tbody>
</table>
islands, and Japan (Lambourn et al., 2001; Dubey et al., 2003, 2004; Measures et al., 2004; Aguirre et al., 2007; Fuji et al., 2007). The prevalence of antibodies against T. gondii detected in the present study in Atlantic harbor seal (5.4%) is similar to the 9% seroprevalence previously reported by Measures et al. (2004) in Atlantic harbor seal from the east coast of Canada and the 4% seroprevalence reported by Fuji et al. (2006) in Kuri harbor seals from Japan, but lower than the 16.4% detected in Pacific harbor seals from Alaska (Dubey et al., 2003). The highest seroprevalence of T. gondii in the present study was observed in grey seals (23.4%), in higher levels than the 9% reported in grey seal populations from the east coast of Canada (Measures et al., 2004). The significant differences observed in T. gondii seroprevalence between the two seal species analyzed in the present study could be due to the fact that each species were sampled in different areas. Both species temporarily leave the water for sites on land including the shore and coastal mainland sites and thus, are probably in contact with waste from human populations, as well as domestic and wildlife species which could increase the risk of exposure to these parasites depending on the sampled areas (Dubey, 2009). However, grey seals forage more off-shore and travel long distances between different shore sites whereas harbor seals are very much more coastal. This different foraging behaviour could be associated with higher exposition to the parasite in harbor seals than grey seals, especially if coastal run-off is the main source of exposure. Further studies would be necessary to determine the risk factors of infection with T. gondii in seals. The present results indicate natural exposure to T. gondii oocysts in the two seal species inhabiting the North Sea and adjacent waters. The presence of T. gondii antibodies (7.9% seroprevalence) in sera from cetaceans stranded along the UK coast has been recently reported (Forman et al., 2009). For definitive diagnosis, detection of the protozoan in tissues would be necessary.

As other intermediate hosts seals can be infected with T. gondii by ingestion of sporulated oocysts, ingestion of bradyzoites in tissue cysts of other intermediate hosts or vertically. Infection via intermediate hosts is necessary. Diagnosis, detection of the protozoan in tissues would be preferred. Patients with toxoplasmosis are believed to be washed into seawater as a source of infection via transport hosts (Conrad et al., 2005; Massie et al., 2010), although this has not been verified. Recently, Lindsay and Dubey (2009) determined experimentally that T. gondii oocysts can sporulate in seawater and that they remain infectious for mice up to 24 months.

In summary, the results of the present study indicate natural exposure of harbor and grey seals to T. gondii oocysts in the North-eastern Atlantic Ocean. To the authors’ knowledge this is the first serological survey of T. gondii in European grey and harbor seal populations. Contamination of marine environment and marine organisms by pathogenic protozoa should be monitored and appropriate run-off management measures might be implemented to avoid oocyst contamination of the sea environment as suggested by Fuji et al. (2007).

Acknowledgements

The authors would like to thank all those who helped in the field. This study received partial support from the Spanish CICYT grant AGL2007-65521 and from the UK Natural Environment Research Council.

References

