Jellyfish and other gelata as food for four penguin species – insights from predator-borne videos

Jean-Baptiste Thiebot1, John PY Arnould2, Agustina Gómez-Laich3, Kentaro Ito4, Akiko Kato5, Thomas Mattern6, Hiromichi Mitamura7, Takuji Noda2, Timothée Poupart1,5, Flavio Quintana3, Thierry Raclot6, Yan Ropert-Coudert7, Juan E Sala3, Philip J Seddon6, Grace J Sutton2, Ken Yoda7, and Akinori Takahashi1,4

Jellyfish and other pelagic gelatinous organisms (“gelata”) are increasingly perceived as an important component of marine food webs but remain poorly understood. Their importance as prey in the ocean is extremely difficult to quantify due in part to methodological challenges in verifying predation on gelatinous structures. Miniaturized animal-borne video data loggers now enable feeding events to be monitored from a predator’s perspective. We gathered a substantial video dataset (over 350 hours of exploitable footage) from 106 individuals spanning four species of non-gelatinous-specialist predators (penguins), across regions of the southern oceans (areas south of 30°S). We documented nearly 200 cases of targeted attacks on carnivorous gelata by all four species, at all seven studied localities. Our findings emphasize that gelatinous organisms actually represent a widespread but currently under-represented trophic link across the southern oceans, even for endothermic predators, which have high energetic demands. The use of modern technological tools, such as animal-borne video data loggers, will help to correctly identify the ecological niche of gelata.

1 National Institute of Polar Research, Tokyo, Japan; 2 School of Life and Environmental Sciences (Burwood Campus), Deakin University, Geelong, Australia; 3 Instituto de Biología de Organismos Marinos (IBIOMAR-CONICET), Puerto Madryn, Argentina; 4 Department of Polar Science, SOKENDAI (The Graduate University for Advanced Studies), Tokyo, Japan; 5 Centre d’Études Biologiques de Chizé, UMR 7372 CNRS et Université de La Rochelle, Villiers-en-Bois, France; 6 Department of Zoology, University of Otago, Dunedin, New Zealand; 7 Graduate School of Informatics, Kyoto University, Kyoto, Japan; 8 Institut Pluridisciplinaire Hubert Curien – Département Écologie, Physiologie et Éthologie, Université de Strasbourg – CNRS UMR7178, Strasbourg, France; 9 Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan

© The Ecological Society of America

Front Ecol Environ 2017; doi: 10.1002/fee.1529
gelatinous prey (Harrison 1984; Arai 2005; Cardona et al. 2012).

Modern approaches to determining predator diets (including stable isotope analyses or scat DNA sequencing) have overcome limitations regarding the detection of fragile gelatinous tissues but still cannot rule out secondary ingestion of gelata by predators targeting other associated prey (Cardona et al. 2012; Jarman et al. 2013; McInnes et al. 2016). Consequently, to clarify the role that gelatinous organisms play in southern oceans' trophic webs, we used recently developed animal-borne video data loggers to record direct observations of predation events. Using a similar approach, Sato et al. (2015) demonstrated how jellyfish can serve to aggregate fishes, which predators such as diving seabirds can feed upon. We set out to quantify ingestion of the gelata themselves as food for such predators. Penguins are endothermic, presumed non-gelatinous-specialist marine predators, and a key component of consumers' biomass from the southern oceans (Brooke 2004). We video-monitored prey intake in four penguin species – Adélie penguins (Pygoscelis adeliae), yellow-eyed penguins (Megadyptes antipodes), Magellanic penguins (Spheniscus magellanicus), and little penguins (Eudyptula minor) – at seven breeding localities across regions of the southern oceans ranging from polar to temperate habitats. By doing so we hoped to provide an improved assessment of the importance of gelata in the southern oceans' food webs, and to support the use of a video-logging approach to conduct innovative and robust ecological assessments.

Methods

The study was conducted during the chick-rearing period for each penguin species at each site. Penguins of both sexes were captured at the nest or when leaving the colony to forage at sea. The video logger (facings forward) was attached to the median dorsal line of the penguins, positioned on the scapular joint (Figure 1); for detailed information about the video data loggers, see WebPanel 1.

The potential adverse effects of instrumentation on the foraging performance of individual penguins was expected to be small and transitory given the very short-term attachment of the loggers (one at-sea foraging trip per bird). Returning birds were recaptured ashore, loggers removed, and data downloaded onto a computer.

After removing video footage that was blurry or obstructed by the penguin's feathers, we visually inspected the remaining exploitable footage to identify and quantify interactions with prey within the camera's field of view. Gelatinous organisms observed on the videos were counted when penguins visibly modified their behavior to attack them (visible head and/or bill movements in contact with the prey). All observed gelata were categorized into three main taxonomic groups: scyphozoans, ctenophores, and salps. Further identification was conducted to the lowest possible taxonomic level, with the help of specialists.

Results

A total of 106 individual penguins were studied across four different years, and over 350 hours of exploitable footage were collected (Figure 2; WebTable 1). The observed gelatinous species included the jellyfish Diplula maris antarctica and the salp Ihelea racovitzae on the videos collected from Adélie penguins; the jellyfish Aequorea forskalea from the yellow-eyed penguin video; the jellyfish Chrysaora plocamia and Aequorea sp, as well as the ctenophore Mnemiopsis leidyi, from the Magellanic penguin videos; and the jellyfish Cyanea sp from the little penguin videos. Importantly, the footage revealed predation on gelata by individual penguins, in all surveyed populations. The penguins apparently targeted gelata as a food source, and were seen swallowing entire specimens, tearing off and consuming parts of them, or pecking at their surface (WebVideo 1). Jellyfish (187 in total, none of them harboring fish) were attacked by all four penguin species. The Magellanic and little penguins also ingested 11 ctenophores. In contrast, salps were visible in the Adélie, yellow-eyed, and little penguin videos but were never observed being targeted. Overall, approximately one-third of the instrumented birds (n = 34) interacted with a gelatinous organism, and the penguins captured on average 0.91 gelatum per hour. Capture of previously known prey (fish and crustaceans) was also observed, and gelata amounted to an average of 3.9%, 4.9%, and 42.4% of prey events in individual Adélie, Magellanic, and little penguins, respectively (WebPanel 2; details of prey given in Sutton et al. 2015; Thiebot et al. 2016). Unexpectedly, Magellanic penguins twice captured a gelatum after swimming through, and not attacking, a swarm of lobster krill (Munida gregaria).
Adélie and little penguins, birds were observed repeatedly attacking individual gelatinous specimens. Furthermore, in Adélie, Magellanic, and little penguins, an individual bird successively attacked several gelata (up to 42 specimens attacked by one Adélie penguin). Repeated surveys with video loggers at Magellanic and little penguin sites confirmed the capture of gelata over 2 years. Predation on gelatinous organisms is estimated to account for >1% (for Adélie, Magellanic, and yellow-eyed penguins) and up to >2% (for little penguins) of the birds’ daily energetic needs (WebPanel 2).

Discussion

Our observations establish that carnivorous gelata are more than just an incidental food source for the endothermic, non-gelatinous-specialist penguins, across regions of the southern oceans. Whereas stomach content and stable isotope analyses have previously suggested that seabirds and tunas might occasionally feed on jellyfish in the northern hemisphere (Harrison 1984; Cardona et al. 2012), our video logger study rules out secondary ingestion as the only explanation for the occurrence of gelata in southern predator diets. Moreover, repeated individual observations exclude the possibility that penguins only peck at gelatinous organisms as unidentified objects, or swallow them by mistake. Battery life limited the extent of our video recording to <25% of complete foraging trips, such that actual encounter and predation rates of gelata might differ over the course of an entire foraging trip. However, our results suggest that penguins may interact with a potentially large number of gelatinous organisms across the southern oceans each year. Our study, based on central-place foraging animals (that is, animals tied to a location from where they must commute to exploit feeding sites), supports the role of carnivorous gelata as a trophic link to apex levels within the coastal component of the southern oceans. By contrast, our video data suggest that penguins did not prey on herbivorous gelata: we seldom, if ever, observed salps, in contrast to studies in the pelagic component of the southern oceans (Pakhomov et al. 2002; Atkinson et al. 2004).

Our findings are consistent with the DNA sequencing of Adélie penguin scats that revealed the ingestion of various carnivorous gelata over several years and on occasion in unexpectedly large proportions (Jarman et al. 2013; McInnes et al. 2016). It is not known whether the routine consumption of gelata by penguins (in addition to other prey) is a recently developed behavior, potentially resulting from a “regime shift” in food webs (Richardson et al. 2009), or whether it occurred previously. Our video data show that the penguins consumed gelatinous organisms even when other prey items were available. Thus, the widespread capture of gelata does not reflect a situation of locally altered prey choice that would be caused by severe ecosystem perturbations (Richardson et al. 2009; Howarth et al. 2014). Gelata may indeed be naturally and cyclically important in the marine food web dynamics, without necessarily reflecting an anomaly (Boero et al. 2008; Condon et al. 2012, 2013). Nevertheless, whether penguin populations could...
be sustained on a predominantly gelatun diet under massive bloom conditions is currently unknown.

For predators (especially energy-demanding endotherms), the energetic benefits of feeding on gelata appear to be very low relative to those from other food sources, such as crustaceans or fish (Doyle et al. 2007). Furthermore, animals living in extremely cold water, such as Antarctic penguins, experience a substantial heat cost when ingesting prey. Therefore, how can predation on gelata, which are renowned for their high salt and water content (95–98% wet mass; Doyle et al. 2007), be metabolically profitable for penguins? First, the low energy reward of gelatun prey for penguins might be balanced by their ease of capture as compared with fish, which require greater effort to chase, manipulate, and assimilate (Arai 2005; Sutton et al. 2015). This is especially true during the breeding season, when penguins are usually losing body mass while rearing chicks and may not be meeting their daily energy requirements (e.g., Green et al. 2009). Ingesting any additional source of energy during this period, even a small amount of energy, could be critical to chick-rearing penguins. Second, predators may be selecting specific gelatunous tissues, such as gonad or arm tissues, which have an energy density about five times that of the bell (Doyle et al. 2007). Given that jellyfish may reach large sizes and their gonads are rich in lipids and proteins, predators that preferentially target these tissues could gain substantial energetic benefits. Third, gelatunous carnivores may act as a simple vector of nutrients, with penguins benefitting from the food being assimilated by these consumers. For example, DNA sequences of calanoid copepods (Crustacea), animals too small for the penguins to visually detect and capture, were commonly identified in Adélie penguin scats (Jarman et al. 2013; McInnes et al. 2016). Interestingly, this approach also revealed that approximately 15% of copepod genetic sequences were co-detected with jellyfish or ctenophore sequences, suggesting that such prey were repeatedly captured concomitantly. Consuming jellyfish arm tissues, where nutrients from the jellyfish’s prey are being assimilated and may be concentrated, could be energetically profitable for penguins. Yet Thiebot et al. (2016) examined and rejected the hypothesis that Adélie penguins target jellyfish to ingest parasitic hyperiid amphipods (Crustacea), hence supporting the value of jellyfish themselves (not the energetic value of their parasites) for penguins. Finally, we suggest that penguins might target gelata as food for purposes beyond energetic ones. For example, the jellyfish mesoglea is a good source of collagen fibers, and scyphozoans can actively incorporate and concentrate free amino acids from organic matter dissolved in seawater (reviewed in Pitt et al. 2009), such that penguins might benefit from consuming gelata to enhance physiological or biochemical processes. This hypothesis, however, needs additional investigation.

The results of our multi-site, -species and -year survey challenge traditional perspectives that marine predators consuming gelata are an anomaly or indicative of a perturbation in ecosystem food web dynamics. Here, we emphasize the “supporting” service of gelatunous carnivores in marine systems, raised by previous studies (Doyle et al. 2014, Hamilton 2016), among other ecological benefits. Furthermore, regular predation on gelata by a larger community of predators than previously known could reduce the estimated rates of carbon advection to the benthos through so-called “jelly-falls”. Sinking gelatunous bodies facilitate the transfer of particulate organic matter to the seabed, mitigating some of the expected losses of carbon from the declining phytoplanktonic flux (Lebrato et al. 2012).

Predation on carnivorous gelata needs to be appropriately acknowledged to better understand and predict the ecosystem dynamics of the southern oceans. Our study shows that the use of modern tools such as predator-borne video data loggers may be instrumental in helping to quantify this impact. Indeed, such methods allow biologists to conduct studies that are typically only possible under lab conditions (e.g., functional responses, prey ingestion rates, handling times). Additionally, animal-borne videos are able to capture invaluable information regarding predators’ foraging decisions (e.g., prey encounter rates, characteristics of the prey fields, intraspecific competition for prey), and this technology is readily transferrable to many other marine predators. Quantifying the potential benefits (other than energetic gains) and costs (such as detoxification processes) for predators capturing gelata may help to refine current understanding of such interactions, at the start of a predicted global bloom of jellyfish (Condon et al. 2013).

Acknowledgements
Logistic and financial support were provided by: Institut Paul-Émile Victor (program #1091), Zone Atelier Antarctique (CNRS), WWF-UK, Japanese Antarctic Research Expedition, Japan Society for the Promotion of Science (JSPS) Bilateral Joint Research Project, JSPS KAKENHI Grant Numbers JP26840153, JP24681006, JP16H06541, and JP17H05983, University of Otago Research Grant, National Agency for Scientific and Technological Promotion (Argentina), Conservation Agency from Chubut Province, National Research Council of Argentina (CONICET), and Parks Victoria (Australia). We thank DJ Lindsay (Japan Agency for Marine-Earth Science and Technology), G Bigatti (IBIOMAR-CONICET), and J Monk (Deakin University) for their help in the identification of gelatunous organisms, and JDR Houghton for comments on an earlier version of this manuscript. The production of this paper was supported by an NIPR publication subsidy.

References

Supporting Information

Additional, web-only material may be found in the online version of this article at http://onlinelibrary.wiley.com/doi/10.1002/fee.1529/suppinfo