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Abstract

Background: Physiological adaptations that allow air-breathing vertebrates to remain underwater for long periods mainly
involve modifications of the respiratory system, essentially through increased oxygen reserves. Physiological constraints on
dive duration tend to be less critical for ectotherms than for endotherms because the former have lower mass-specific
metabolic rates. Moreover, comparative studies between marine and terrestrial ectotherms have yet to show overall distinct
physiological differences specifically associated with oxygen reserves.

Methodology/Principal Findings: We used phylogenetically informed statistical models to test if habitat affects hematocrit
(an indicator of blood oxygen stores) in snakes, a lineage that varies widely in habitat use. Our results indicate that both
phylogenetic position (clade) and especially habitat are significant predictors of hematocrit. Our analysis also confirms the
peculiar respiratory physiology of the marine Acrochordus granulatus.

Conclusion/Significance: Contrary to previous findings, marine snakes have significantly–albeit slightly–elevated
hematocrit, which should facilitate increased aerobic dive times. Longer dives could have consequences for foraging,
mate searching, and predation risks. Alternatively, but not exclusively, increased Hct in marine species might also help to
fuel other oxygen-demanding physiological adaptations, such as those involved in osmoregulation.
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Introduction

Evolutionary habitat transitions often involve substantial

modifications in morphology, physiology, and behaviour, partic-

ularly if the new habitat imposes novel physical challenges. For

example, transition to an aquatic life leads to selection on such

attributes as the ability to move through water, to remain

underwater for long periods, and to dive to considerable depths

[1]. Features facilitating such tasks are different from those

required in most terrestrial organisms. Accordingly, lineages of

secondarily marine vertebrates often provide remarkable examples

of specific adaptation to aquatic life [1–3].

Physiological adaptations that allow air-breathing vertebrates to

remain underwater for long periods primarily involve modifica-

tions of the respiratory system, essentially through increased

oxygen reserves (e.g. blood volume, hemoglobin concentration,

myoglobin concentration [3]). Enlarged oxygen stores allow

increased dive duration while delaying the shift toward anaerobic

metabolism, which would force the animal to spend longer periods

of time breathing and resting at the surface after dives to purge its

physiological debt [3].

Previous research on physiological and morphological adapta-

tions to aquatic life has mainly focused on endothermic vertebrates

[4]. However, physiological constraints on diving should be less of

a problem for ectotherms than endotherms, for at least three

reasons [4]. First, ectotherms have relatively low mass-specific

metabolic rates (compared to endotherms) and hence reduced

oxygen needs [5]. Second, ectothermic vertebrates exhibit a

marked flexibility in many if not most aspects of physiology,

including those involved during extended breath-holding periods

(e.g. body temperature, anoxia, acidosis, glycaemia [6], [7]).

Finally, marine reptiles do not face the heat-conserving constraints

on body shape imposed by endothermy, and they have high

surface area-to-volume ratios that potentially allow for increased

cutaneous oxygen uptake while submerged [8–11].

Most of the previous comparisons of terrestrial and diving, air-

breathing, ectothermic ‘‘reptiles’’ have failed to find common

physiological differences specifically associated with respiration

and metabolism [9], [12–15]. In a few instances, however, studies

have demonstrated taxon-specific physiological modifications that

appear to represent evolutionary adaptations to aquatic life in

ectotherms. For example, the highly aquatic Acrochordidae

(especially the marine Acrochordus granulatus) have an exceptionally

large oxygen store (combining both high blood volume and high

blood oxygen carrying capacities [16]). In addition, leatherback

turtles (Dermochelys coriacea) have high myoglobin concentration in

their muscles [17]. Apart from these two extreme examples of

marine reptiles displaying oxygen stores approaching levels found

in mammals and birds, the failure to find common physiological

adaptations in marine reptiles (as compared with studies of
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endotherms [3]) has lead to the notion that the primary

adaptations for diving in ectotherms may be morphological (e.g.

paddle-shaped limbs or tails) and behavioural, rather than

physiological [9], [14], [15]. Nonetheless, previous empirical

studies are far too limited to allow a clear understanding of how

ectothermic vertebrates cope with the challenges associated with

adoption of a secondarily aquatic lifestyle [4].

Snakes are well suited to identify possible evolutionary

adaptations to aquatic life. First, almost every family has

undergone independent transitions from terrestrial toward aquatic

or marine habits, thus allowing examination of possible parallel or

convergent physiological adaptations among lineages [13]. Sec-

ond, snakes occupy a continuum of ecological situations between

terrestrial and marine species within restricted phylogenetic

lineages (i.e. the family [13]), thus allowing comparisons of closely

related species along a gradient of habitat use. Third, because of a

relative consistency in blood volume and hemoglobin-oxygen

affinity between terrestrial and aquatic species [12–14], and the

absence of significant amounts of myoglobin in snake muscle [14],

[18], indexing blood oxygen stores by the simple measurement of

hematocrit is reasonable [12–14], [18].

Here, we analyze hematocrit in relation to the use of aquatic

environments in snakes by use of both phylogenetic and non-

phylogenetic statistical models [19–21]. We also explicitly examine

the relationship of hematocrit to both habitat use and phylogenetic

position.

Methods

Information on hematocrit (henceforth, Hct; measured as

percent packed blood cell volume per unit volume of blood) was

collected from the literature and from unpublished studies (67

species belonging to 7 families, Online Appendix S1). When

multiple values of Hct were available for a given species, we used a

mean value. Because Hct can vary with age in squamates [22–24],

we retained Hct of adult snakes only in our analyses.

We assigned to each snake species a Habitat category based on

published data, field guides, and personal experience (Online

Appendix S1).

Terrestrial. Species without any particular affinity for water.

Semi-aquatic. Amphibious species associated with freshwater.

Aquatic. Fully aquatic species living in freshwater.

Marine. Species living almost exclusively at sea. Due to long

foraging trips (i.e. weeks), which require developed diving

capacities, amphibious Laticaudinae were included in this group.

Some populations of semi-aquatic species can be observed in

xeric environments (e.g. Notechis scutatus [25]), but we emphasize

that we selected the most typical Habitat for a given species,

usually taking into account the location of the populations

analysed for Hct in the literature.

We constructed a composite estimate of phylogenetic relation-

ships using hypotheses from previously published studies. We

began with higher-level relationships connecting the major

lineages of snakes, and nested lower-level relationships within this

framework. We followed published methods for selecting among

multiple trees for any given set of taxa ([21], [26] Figure 1 and

Online Appendix S2 & S3 for details on the phylogeny

construction).

We examined the effects of Clade and Habitat using

conventional (non-phylogenetic) multiple regression (Ordinary-

Least-Squares - OLS - regressions) with dummy variables that

code for Clade and Habitat (ANCOVA with parallel slopes). We

repeated the analysis using Phylogenetic Generalized Least

Squares (PGLS) models and also with phylogenetic models that

use a branch-length transformation based on the Ornstein-

Uhlenbeck (OU) model of evolution for residual Hct variation

(henceforth, RegOU [27]). In all cases, our alternate models

increased in complexity (no independent variable, Clade or

Habitat, Clade and Habitat: Table 1). We performed all multiple

regressions in Matlab using Regressionv2.m [27]. The fit of

alternate models was compared using their AICc (Akaike’s

Information Criterion -AIC - with a second order correction for

small sample sizes, where smaller values indicate a better fit of the

model to the data [28]); ln maximum likelihood ratio tests (LRT)

were used to test for phylogenetic signal by comparison of the

RegOU with the OLS models. Further details on the statistical

procedures are available elsewhere [21], [27].

Results

Based on AICc, the preferred model is OLS with both Clade

and Habitat as independent variables (AICc = 393.19, Table 1).

The model with the next-lowest AICc (396.17) is the RegOU with

the same independent variables (Table 1). Based on the "rough

rules of thumb" of Burnham and Anderson ([28] p. 70), the

difference in AICc between these two models (,3) would indicate

that the RegOU model has "weaker support." All other models

have AICc values that are at least 10 larger (Table 1), indicating

"virtually no support".

Based on LRTs for models incorporating the same independent

variables, the RegOU models never fit the data significantly better

than the corresponding OLS models. However, the AICc of the

RegOU model is always larger due to the extra parameter

estimated in this model (i.e. the OU transformation parameter).

Thus, we found no statistically significant phylogenetic signal in

the residuals of our dependent variable after accounting for

variation related to the Habitat and Clade independent variables

[27], [29].

Based on partial F tests, both the OLS and RegOU models

indicate that with effects of Habitat controlled, Acrochordidae

have significantly elevated levels of Hct relative to the Colubrinae

clade (Table 2, Figure 2a). Additionally, the Natricinae clade

(entirely semi-aquatic) tends to have higher Hct than Colubrinae

(entirely terrestrial; marginally not significant for OLS, and

significant for RegOU, Table 2, Figure 2a). With effects of Clade

controlled, aquatic snakes had significantly lower Hct than their

terrestrial counterparts, whereas marine snakes display significant-

ly higher Hct (Table 2, Figure 2b).

Discussion

Both Clade and especially Habitat accounted for a substantial

amount of the variation in Hct (Tables 1, 2). A significant effect of

Clade on a non-hierarchical tree (OLS model) indicates that

hematocrit varies among major branches of the tree, while the fact

that the OLS model fits better than either PGLS or RegOU

models indicates no statistically significant "phylogenetic signal"

[20], [21], [27], [29] remains in the residuals after accounting for

Clade and Habitat.

Contrary to previous findings [9], [12], [13], [31], our study

suggests that marine snakes display increased blood-oxygen stores.

For instance, marine elapids, the most important and diverse sea

snake lineage (N = 16 species, mean Hct 31.3%) had higher Hct

than terrestrial elapids (N = 3 species, mean Hct 25.6%). Due to

constraints of marine environments (versus shallower, freshwater

environments), marine snakes rely on potentially deep (.80 m)

and long (.1 h) active dives [4], [32]. In this respect, increased

Hct might allow prolonged dive duration and sustained aerobic

metabolism even during the longest dives [14]. In turn, long dives

Blood Oxygen Stores in Snakes
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would allow marine snakes to remain in contact with potential

prey for greater periods of time (or to prolong courtship duration

[10]), but also to surface less frequently to replenish oxygen stores,

thereby decreasing predation risks while these conspicuous species

travel through the water column. Acrochordids also showed

significantly elevated Hct, probably because the marine Acrochordus

granulatus has the highest Hct in our dataset (.50% versus ,21%

for the two other Acrochordidae in our dataset; see below). Blood-

oxygen carrying capacities of Acrochordus granulatus exceed those of

other reptiles and approach levels characteristic of endothermic

mammals and birds [16]. Determining whether this peculiarity is

related to the marine habits of A. granulatus versus other ecological

specificities (e.g., use of calm, anoxic water bodies [16]) will require

further investigations (see below).

Although our results also suggest that aquatic species have lower

Hct than their terrestrial counterparts (Table 2), we recommend

these results be interpreted with caution. The aquatic category

contained our lowest sample size (N = 2) and both species belong

to the Acrochordidae (Acrochordus arafurae 21.6%, Acrochordus

javanicus 21.0%), a lineage known to be very atypical in terms of

ecology, morphology, and physiology compared to other Caeno-

phidia [30]. Future studies should examine Hct of other fully

aquatic snake species. In keeping with this cautious interpretation,

further examination of our data set indicates that semi-aquatic

colubrids (Natricinae) tended to have slightly higher Hct than their

terrestrial counterparts (29.4% vs 27.1%).

Our current analysis does not allow us to discern the respective

contributions of diving habits per se and other oxygen-demanding

habits on increased Hct in marine snakes (notably due to a lack of

data on diving freshwater species; see above). For instance, marine

reptiles display specific physiological adaptations related to

osmoregulation (i.e. salt-glands [33]). Expelling excess salt in a

hyper-osmotic medium such as seawater is costly in term of energy,

and thus oxygen requirements ([34] but see [15]). A superficial

Figure 1. Phylogeny used for analyses with corresponding Hct for each species (see Online Appendix S1, S2 & S3 for details). Branch
lengths represent the arbitrary method of Pagel, as used for statistical analyses. Black bars are for terrestrial species, light grey bars for semi-aquatic
species, hatched bars for aquatic species, and white bars for marine species. Left-to-right order matches order of species in Online Appendix S1.
doi:10.1371/journal.pone.0017077.g001
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examination of the data from Acrochordidae could lead to a picture

where the freshwater A. arafurae and the facultatively brackish-water

A. javanicus both display lower Hct than the closely related marine A.

granulatus (i.e. ,21% versus .50%). However, this example does not

allow robust conclusions about marine snakes in general, most

notably because of the atypical ecology, morphology, and

physiology of this lineage. Future exploration should focus on a

promising ‘‘model lineage’’ of highly aquatic snakes - Homalopsi-

dae, especially the widespread Cerberus rynchops - in which different

populations of the same species use a continuum of contrasting

aquatic habitats (freshwater, brackish, and saltwater [35]; see also

[36], [37] for comparison between closely related Natricinae using

freshwater versus estuarine habitats). Accordingly, other ecological

aspects of snake life history might also benefit from increased Hct

and thus increased aerobic capacity. For instance, contrasting

activity levels (e.g. active versus sit-and-wait foraging) might have a

strong impact on the evolution of snake locomotor performance,

Hct, and other cardiovascular and respiratory characteristics. We

suggest that future studies should explore snake eco-physiology in

relation to activity levels, independently from habitat use [38].

Alternatively, increased Hct is also likely to impose costs,

especially in terms of increased blood viscosity. Such issues have

been investigated in the case of A. granulatus, for which higher

blood viscosity is at least partially compensated by unusually low

metabolic rates and sluggish habits [9], [16], [30]. However, we

suggest that the great overlap of Hct among habitats (e.g. Figure 1)

does not suggest a specific effect of blood viscosity (and its potential

effects on aspects of the cardiovascular system) for most marine

snakes (except A. granulates; see above). Overall, exploring the

effects of increased blood viscosity on cardiovascular and

respiratory systems (e.g. blood pressure, cardiac rhythms, meta-

bolic rates) in snakes remains a largely open field of investigation.

Additionally, we acknowledge that our analysis does not take

into account the role of the right lung (the left one being vestigial

and non-functioning or totally absent in Caenophidia), which is

obviously a major component of respiratory physiology [9].

Indeed, the lungs of marine elapids and acrochordids are longer

than those of terrestrial snakes, extending from the neck to the

posterior end of the body cavity [9]. Our limited knowledge of

snake diving behaviour, however, does not indicate whether this

elongated lung is used as an oxygen store while diving. Most

notably, the inflation state of the lung during dives has not been

quantified. Although an inflated lung would provide increased

oxygen stores, it would also increase buoyancy and considerably

Table 1. Table of alternate regression models for predicting Hct in snakes.

Conventional (OLS) Phylogenetic (PGLS) Phylogenetic with O-U model (RegOU)

Model Ln ML AIC AICc MSE SEE r2 Ln ML AIC AICc MSE SEE r2 Ln ML AIC AICc MSE SEE
REML
d r2

No independent
variable

2209.29 422.59 422.78 30.71 5.54 0 2223.48 450.95 451.14 46.90 6.85 0 2208.24 422.47 422.85 29.77 5.46 0.124 0

Clade 2203.09 422.18 424.67 28.08 5.30 0.17 2223.15 462.29 464.77 51.09 7.15 0.01 2202.75 423.50 426.66 28.01 5.29 0.057 0.15

Habitat 2198.05 406.11 407.09 23.01 4.80 0.28 2207.65 425.30 426.29 30.64 5.53 0.38 2197.58 407.15 408.55 22.85 4.78 0.195 0.27

Clade + Habitat 2183.20 388.39 393.19 16.32 4.04 0.54 2205.36 432.72 437.52 31.62 5.62 0.41 2183.20 390.39 396.17 1.65 4.07 0.035 0.52

Based on AIC and AICc (smaller values indicate better-fitting and more parsimonious models), the OLS (Clade+Habitat) model (shown in boldface) is preferred. ML, MSE,
SEE, and REML d stand for maximum likelihood, mean squared error, standard error of the estimate, and REML estimate of d (the OU transformation parameter),
respectively. See text and [21], [27] for further explanations.
doi:10.1371/journal.pone.0017077.t001

Table 2. Full models to predict Hct.

Conventional (OLS) Phylogenetic with OU transform

Variable Coefficient SE F df P Coefficient SE F df P

Y-intercept 27.0462 1.120 26.7951 1.259

Semi-aquatic 23.3531 2.381 1.98 1, 57 0.1648 23.8318 2.395 2.559 1, 57 0.1152

Aquatic 223.4794 5.447 18.58 1, 57 ,0.0001 223.5633 5.571 17.891 1, 57 ,0.0001

Marine 5.3206 2.278 5.45 1, 57 0.0231 5.2367 2.363 4.911 1, 57 0.0307

Boidae 21.0329 2.385 0.19 1, 57 0.6646 20.9355 2.600 0.129 1, 57 0.7208

Acrochordidae 17.7332 4.771 13.81 1, 57 0.0005 18.068 4.897 13.612 1, 57 0.0005

Viperidae 22.3495 1.565 2.25 1, 57 0.1391 22.056 1.750 1.381 1, 57 0.2448

Homalopsidae 20.1668 4.771 ,0.01 1, 57 0.9723 20.1682 4.897 ,0.01 1, 57 0.9728

Elapidae 21.0949 2.329 0.22 1, 57 0.6408 20.7096 2.434 0.085 1, 57 0.7717

Natricinae 5.7192 2.900 3.89 1, 57 0.0534 6.2637 3.019 4.304 1, 57 0.0425

Habitat 15.41 3, 57 ,0.0001 14.69 3, 57 ,0.0001

Clade 5.30 6, 57 0.0002 4.92 6, 57 0.0004

Although OLS is the preferred model based on AICc (Table 1), we also show the next-best RegOU model. Note that the base groups for Habitat and Clade are Terrestrial
and Colubrinae, respectively. Partial regression coefficients and significance levels are relative to those base groups. See text and [21], [27] for further explanations.
doi:10.1371/journal.pone.0017077.t002
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increase the effort spent by a swimming snake to reach the seafloor

to forage. Clearly, investigations on the role of the lung as an

organ used for buoyancy regulation versus oxygen stores in marine

snakes are needed.

Lastly, we note some limitations of our analysis. The use of Hct

as a proxy for blood oxygen stores is a simplification, and other

blood-related traits are likely to play a role in oxygen storage and

distribution, and thus in the overall respiratory physiology of

marine snakes. Most notably, blood volume is a likely candidate to

examine in order to refine estimates of oxygen stores in snakes [9],

[10], [12–14]. Although the few available values for blood volumes

suggest a similarity between land and sea snakes ([12], [14] but see

[16]), we emphasize that a comprehensive analysis of snake oxygen

stores and habitat use will require a thorough investigation.

Additionally, examinations of other traits, such as hemoglobin-

oxygen affinity, or the role of cardiac shunts and cutaneous gas

exchanges (all of which have been assessed for only a limited subset

of species [9], [10], [12–14], [16], [39]), will be crucial in

unravelling the respiratory challenges faced by snakes during the

invasion of aquatic and marine ecosystems. This lack of

information clearly points out the need for further investigations

of the ecological and evolutionary physiology of marine and

aquatic snakes.

Although our results show that marine snakes have increased

Hct as compared with terrestrial species, this difference seems

modest in comparison to what is found in marine endotherms [2],

[3], despite the fact that marine snakes are extremely good divers

[4], [18], [32]. Indeed, Figure 1 highlights the great overlap

between Hct recorded in terrestrial and marine snakes. We

emphasise that the relatively modest effects we document is a

major phenomenon to explore. Although the generally low

metabolic rates and great physiological flexibility of ectotherms

are likely to explain such differences [4], [5], [15], future

investigations are required to determine what other components

of the cardiovascular and respiratory systems have been altered

adaptively during the evolution of marine snakes [40], and

whether such alterations may have led to trade-offs with other

traits (e.g. the effects of blood viscosity; see above), including

components of the life history [41].

Supporting Information

Appendix S1 Online_Appendix_S1.xls. Data file in Excel file

format with species code (PDICode) in column 1. Column 2 is the

left to right order of taxa in our phylogenetic tree (Figure 1, see

Online Appendix S2 and S3). Clade and Habitat are the

classifications used in our analysis. Hct is percentage of

hermatocrit per unit volume blood and Source indicates the

source of our data (see Excel sheet Source for complete references).

(XLS)

Appendix S2 Details on the phylogeny construction.

(DOC)

Appendix S3 File of Phylogenetic tree. This file (Hct67P_2.phy)

of the phylogenetic tree (described in Online Appendix S2, and

shown in Figure 1) was produced in Mesquite (Version 2.72

Maddison and Maddison, 2006; http://mesquiteproject.org). It is

in the Newick Standard File Format.

(PHY)
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