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cULCO, Département Génie Biologique, IUT Calais-Boulogne, Bassin Napoléon, Quai Masset, BP 120, 62327 Boulogne-sur-Mer, France
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Abstract

We used the stable isotope method to investigate the ecological niches of Antarctic fishes, with d13C and d15N as proxies of fish
habitats and dietary habits, respectively. Muscle isotopic signature was measured for each of 237 delipidated tissue samples from 27
fish species collected offshore Adélie Land, East Antarctica. Overall, d13C values ranged from �25.3& to �18.2&, thus allowing
characterizing of the fish habitats, with inshore/benthic species having more positive d13C signatures than offshore/pelagic ones. No
clear difference in the d13C values of pelagic fishes was found between species living in neritic and oceanic waters. Overall, the d15N
signatures of neritic pelagic and epibenthic fishes encompassedw1.0 trophic level (3.1&), a higher difference than that (1.4&) found
within the oceanic assemblage. Fisheswith the lowest and highest d15N values are primarily invertebrate- and fish-eaters, respectively.
The isotopic niches of fishes illustrate the different mechanisms allowing coexistence, with most fishes segregating at least by one of
the twoniche axes (d13C andd15N).Muscle isotopic values also document interindividual foraging specialization over the long-term in
coastal benthic fishes, but not inmore offshore pelagic species. Finally, the d15N signatures of fishes overlapwith those of penguins and
seals, indicating that seabirds and marine mammals share the upper levels of the Antarctic pelagic ecosystem with some large fish
species. In conclusion, the concept of isotopic niche is a powerful tool to investigatevarious aspects of the ecological niche ofAntarctic
fishes, thus complementing the use of other conventional and non-conventional approaches.
� 2011 Elsevier B.V. and NIPR. All rights reserved.
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1. Introduction

Understanding habitat selection and use in fish is
time- and resource-consuming, often requiring the
collection of large numbers of individuals and various
sampling methods to characterize habitat preferences.
Although stomach content analysis provides insight
into prey items and foraging habitats, it only represents
a limited area of actual habitat selection. Within that
context, measuring the isotopic niche of animals is
a powerful complementary tool to the conventional
means investigating various dimensions of their
ecological niche (Newsome et al., 2007). The basic
isotopic concept is that an animal’s chemical compo-
sition is directly influenced by what it consumes.
Consumers are enriched in 15N relative to their food
and consequently stable-nitrogen isotope measure-
ments (d15N) serve as indicators of a consumer diet
and trophic position. By contrast, stable carbon
signatures (d13C) vary little along the food chain and,
in the marine environment, d13C values are mainly
used to indicate the foraging habitats of predators,
including fish. The stable isotope method provides
some key advantages (Hobson, 2009). Firstly, they
provide information on assimilated and not just
ingested food. Secondly, they can provide an unbiased
estimate of trophic level and habitat, because they are
not hampered by the shortcoming of biases associated
with conventional approaches. Thirdly, they provide
time-integrated information that represents days to
months of the consumer life depending on the tissue
chosen. For example, the isotopic signature of white
muscle is representative of the fish isotopic niche
during the months preceding sampling (Herzka, 2005).

Over the last 15 years, stable isotopes have become
a powerful tool for ecological studies on fish (Dufour
and Gerdeaux, 2001), including their trophic relation-
ships (Sherwood and Rose, 2005), resource partition-
ing within communities (Duponchelle et al., 2005),
individual specialization (Beaudoin et al., 1999) and
migrations (Nakamura et al., 2008). Surprisingly, there
has been no research on the isotopic niches of
Antarctic fishes, with limited isotopic information
being provided by predators’ and food web investiga-
tions (Rau et al., 1992; Table 1). The objective of this
study was thus to test the use of stable isotopes to
better define the ecological niches of Antarctic fishes,
including their habitats (d13C) and dietary habits
(d15N). We focused on fishes collected during the
Collaborative East Antarctica Marine Census (CEA-
MARC) that took place off Adélie Land, East
Antarctica, during the austral summer 2007e2008.

Little is known about the foraging ecology of fishes
from Adélie Land, the two available contributions
being those of Hureau (1970) and Koubbi et al. (2007)
that detailed the diet of four nototheniid species.

Based on the scientific literature on fish biology and
on isotopic gradients in aquatic environments, we did
the following predictions about the isotopic niches of
Antarctic fishes.

1. Fish d13C values should decrease in the following
order coastal > neritic > oceanic species, because
d13C signature of particulate organic matter
decreases from inshore to offshore waters (Hill
et al., 2006), including Antarctic waters (Trull
and Armand, 2001) (prediction 1).

2. Muscle d13C values should be higher in benthic
than in pelagic species, because benthic organisms
are 13C-enriched when compared to pelagic ones
(France, 1995; Kaehler et al., 2000) (prediction 2).

3. The d13C signature of fish caught in northern
waters should be higher than that of southern
species, because marine plankton d13C, and thus
consumer d13C, varies with latitudes in oceanic
waters (Rau et al., 1982), including the Southern
Ocean (Trull and Armand, 2001; Cherel and
Hobson, 2007; Jaeger et al., 2010b; Quillfeldt
et al., 2010) (prediction 3). The latitudinal d13C
gradient results from the annular structure of the
Southern Ocean worldwide, with water masses and
fronts with different physical and biological char-
acteristics encircling the Antarctic continent (Orsi
et al., 1995).

The Southern Ocean is here defined as the marine
area south of the Subtropical Front, and the Antarctic
Zone (Antarctic waters) as the area south of the
Antarctic Polar Front.

2. Material and methods

Most fishes were collected during the Census of
Antarctic Marine Life (CAML, International Polar
Year Project 53) and its component program CEA-
MARC. Its key focus was a major ship-based research
program to study the marine organisms and oceanog-
raphy of the waters north of Adélie Land and George V
Land in the austral summer of 2007e2008. Specifi-
cally, neritic and oceanic fishes were caught using
beam trawls and pelagic trawls (international young
gadoid pelagic trawl, IYGPT, and rectangular mid-
water trawl, RMT) during the RSV Aurora Australis
and TRV Umitaka Maru cruises, respectively. Coastal
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species were caught at and near the French station of
Dumont d’Urville using various gears, including
handlines, bottom longlines, trammels and dredges
during 2007 and at the beginning of 2008.

Fish identification relied on their external features,
using published guides (Gon and Heemstra, 1990) and
our own reference collection. Each individual fish was
measured (standard length, SL), and a piece of its
white muscle was sampled and kept in 70% ethanol
until analysis. After being dried in an oven at þ50 �C,
muscle samples were ground to a fine powder and
lipids were extracted using cyclohexane. The low C:N
ratio of the delipidated samples allowed comparison of
the carbon isotopic signature without any deleterious
effect due to different lipid contents among individuals
and species (see discussion below). Relative abundance
of 13C and 15N were determined using an Isoprime
(Micromass) continuous-flow isotope-ratio mass spec-
trometer. Results are presented in the usual g notation
relative to PeeDee belemnite and atmospheric N2 (Air)
for d13C and d15N, respectively. Replicate measure-
ments of internal laboratory standards (acetanilide)
indicate measurement errors < 0.15& and <0.20&
for d13C and d15N, respectively.

Data were statistically analyzed with SYSTAT 12
(statistical significance:P< 0.05).Values aremeans� SD.

3. Results

The stable isotopic signature of white muscle from
237 individuals belonging to 27 fish species were
analyzed in the present work, thus increasing consid-
erably the number of individuals (n ¼ 177) and species
(24) of Antarctic fish for which isotopic data were
available in the scientific literature (Table 1). Notice-
ably, we looked at 20 species of fish that were not
previously investigated isotopically in Antarctic waters
(Table 2). Overall, the d13C values of fish white muscle
encompass a 7.1& difference, from �25.3& (Chae-
nodraco wilsoni) to �18.2& (Notothenia coriiceps),
while d15N values encompass a 4.2& difference, from
9.2& (Protomyctophum bolini) to 13.9& (Artedidraco
skottsbergi) (Table 2). Such a large range in isotopic
signatures indicates that fish foraged in various habitats
where they fed on different prey.

3.1. Isotopic niches of coastal and neritic fishes

According to their size (Gon and Heemstra, 1990),
the coastal and neritic fishes investigated in the pre-
sent study were large juveniles, subadults and adult
specimens (Table 1). In Adélie Land, the 12 species of

coastal and neritic fishes were segregated by both their
d13C and d15N muscle values (KruskaleWallis,
H ¼ 141.00 and 119.97, respectively, both
P < 0.0001). Noticeably, three species (N. coriiceps,
Trematomus bernacchii and T. pennellii) showed more
positive d13C values (from �19.3 to �18.2&) than the
remaining nine species (from �25.3 to �22.3&)
(Fig. 1, upper panel). Otherwise, the 12 fish species fed
along a continuum of d15N values amounting to 3.1&,
from 10.3& (C. wilsoni) to 13.4& (Chionodraco
hamatus).

Resource partitioning of related species belonging
to the same family was investigated. The two bathy-
draconids did not show statistically different isotopic
signatures (t-tests, t ¼ 0.57 and 0.56, P ¼ 0.575 and
0.583 for d13C and d15N, respectively), but the three
channichthyids segregated by both their d13C and d15N
values (ANOVA, F2,20 ¼ 38.39 and 51.76, respectively,
both P < 0.0001). Post-hoc Tukey Honest Significant
Difference multiple comparison tests indicate that
C. hamatus and Cryodraco antarcticus had identical
isotopic niches that nevertheless differed from that of
C. wilsoni. Overall, nototheniid fishes segregated by
both their habitats (d13C) and trophic positions (d15N)
(H ¼ 98.52 and 87.65, respectively, both P < 0.0001).
Tukey tests indicate that the seven species differed by
at least one isotopic niche axe, with only Trematomus
eulepidotus and Pleuragramma antarcticum showing
a complete overlap in their d13C and d15N values
(Fig. 1, upper panel).

Adult P. antarcticum were collected using both
bottom and pelagic trawls (Aurora Australis and
Umitaka Maru cruises, respectively). Fish size was not
statistically significant among the two groups (SL:
155 � 19 and 165 � 14 mm, n ¼ 12 and 18, respec-
tively; t-test, t ¼ 1.64, P ¼ 0.113), but muscle d13C and
d15N values of individuals caught at the bottom were
higher than those of fish caught in the water column
(d13C: �24.3 � 0.3 and �25.1 � 0.3&, d15N:
10.8 � 0.6 and 10.1 � 0.6&; t ¼ 7.55 and 3.16,
P < 0.0001 and P ¼ 0.004, respectively).

3.2. Isotopic niches of oceanic fishes

According to their size (Gon and Heemstra, 1990),
the oceanic fishes investigated in the present study
were subadult and adult specimens (Table 1). The
seven species of oceanic fishes were segregated by
both their d13C and d15N values (KruskaleWallis,
H ¼ 49.30 and 29.15, respectively, both P < 0.0001).
Two species (Cyclothone microdon and, to a lesser
extent, Cynomacrurus piriei) showed more positive
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d13C values (from �22.1 to �21.0&) than the
remaining species (from �24.5 to �23.0&) (Fig. 1,
lower panel). Otherwise, the seven species fed along
a continuum of restricted range of d15N values
amounting to 1.7&, from 9.2& (P. bolini) to 10.9&
(Bathylagus antarcticus). The three myctophids seg-
regated by their d13C, but not their d15N values
(H ¼ 18.71 and 1.67, P < 0.0001 and ¼ 0.435,
respectively), with Tukey tests showing that Electrona
antarctica and P. bolini differed by their d13C values
(P < 0.0001).

4. Discussion

4.1. Lipid removal and d13C values

The lowest d13C values of individual fishes from
Adélie Land were in the range from �25.5 to �26.0&.

These values are noticeably higher than the carbon
signature of some Antarctic fishes from previous
investigations. Those very low d13C values are
consistently associated with high C:N ratios (Rau et al.,
1992; Table 1), thus indicating a large lipid effect
lowering the fish carbon signature, because C:N is
positively related to lipid content in animal tissues
(Post et al., 2007) and lipids are depleted in 13C when
compared to proteins and carbohydrates (DeNiro and
Epstein, 1977; Tieszen et al., 1983). Lipid content
varies with tissue-type, nutritional status, age, indi-
vidual and species, and these variations have the
potential to introduce considerable bias into biological
interpretation of d13C signatures. In the present study,
lipid extraction leads to an homogenization of C:N
mass ratios, with all values being in the range 3.1e3.4
(Table 2). Such low C:N values indicate low lipid
contents that do not influence the d13C signatures (Post
et al., 2007). We therefore recommend firstly to extract
lipids from fish muscle (or, alternatively, to mathe-
matically normalize d13C values using C:N mass ratios
of the samples; Post et al., 2007); secondly to monitor
the sample C:N ratios to check chemical extraction,
and thirdly to include routinely the C:N ratios together
with d13C and d15N values in published works.
Consequently, previous d13C values from non-delipi-
dated samples with associated high C:N ratios or with
no indication of their C:N values cannot be used to
define accurately the foraging habitats of fish and their
food sources and trophic pathways (e.g. Pakhomov
et al., 2006; Table 1).

4.2. Isotopic niches of Antarctic fishes

4.2.1. Predictions 1 & 2
The isotopic investigation highlights two main

features within the Antarctic fish assemblage: firstly,
three species segregate from the other fishes by their
high muscle d13C values, and secondly, there is a large
overlap in the low d13C values of neritic and oceanic
fishes (Fig. 1). N. coriiceps, T. bernacchii and T. pen-
nellii are shallow benthic species (Gon and Heemstra,
1990). Noticeably, N. coriiceps, which is the coastal
species with the most restricted depth range (0e30 m;
Hureau, 1970), showed the most positive d13C value.
The species thus illustrates well the horizontal (inshore/
offshore) and vertical (benthic/pelagic) isotopic gradi-
ents in the marine environments and it can be considered
as a coastal end-point for the combination of both
gradients in Adélie Land. Two other fish species were
also collected in coastal waters, but both Gymnodraco
acuticeps and Trematomus hansoni presented lower

δ
δ

Fig. 1. Stable carbon and nitrogen isotope values of white muscle of

coastal and neritic (upper panel) and oceanic (lower panel) fishes

from Adélie Land, Antarctica. Abbreviations, Ba: Bathylagus ant-

arcticus, Bs: Bathylagus sp., Ca: Cryodraco antarcticus, Ch: Chio-

nodraco hamatus, Cp: Cynomacrurus piriei, Cm: Cyclothone

microdon, Cw: Chaenodraco wilsoni, Ea: Electrona antarctica, Ga:

Gymnodraco acuticeps, Gb: Gymnoscopelus braueri, Nc: Notothenia

coriiceps, Pa: Pleuragramma antarcticum, Pb: Protomyctophum

bolini, Rg: Racovitzia glacialis, Tb: Trematomus bernacchii, Te:

Trematomus eulepidotus, Th: Trematomus hansoni, Tn: Trematomus

newnesi, Tp: Trematomus pennellii. Values are means � SD.
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d13C values than the three former species. All the five
species have a benthic life style and feed primarily on
benthic prey (Hureau, 1970; Gon and Heemstra, 1990;
La Mesa et al., 2004). However, G. acuticeps and T.
hansoni also include pelagic items in their diet (Hureau,
1970; Eastman, 1985), thus explaining their lower
carbon signatures that are intermediary between benthic
and pelagic ones (e.g. G. acuticeps in Fig. 2). In the
same way, the intermediate d13C value of Trematomus
newnesi is in agreement with the semipelagic life style
of the species (Gon and Heemstra, 1990).

P. antarcticum is by far the dominant midwater fish
over the Antarctic shelf (Gon and Heemstra, 1990).
Accordingly, its d13C signature is low, which is
a consistent characteristic of pelagic organisms from
high-Antarctic waters (Cherel, 2008). Interestingly,
d13C values were slightly higher in specimens caught
in bottom than in pelagic trawls, which agrees with
adult P. antarcticum living in the deep and occasionally
feeding near the bottom (Eastman, 1985). As expected,
other pelagic species also show d13C values < �24&
(C. wilsoni and Dacodraco hunteri; Eastman, 1993; La
Mesa et al., 2004), and their low d13C signatures
confirm that epibenthic species (C. hamatus, Cryo-
draco antarcticus, Trematomus eulepidotus and
T. lepidorhinus; Gon and Heemstra, 1990; La Mesa
et al., 2004) feed mainly on pelagic prey. Finally, the

d13C values of neritic and oceanic fishes overlap
greatly in the pelagic environment. For example, the
two commonest Antarctic pelagic species, P. antarcti-
cum over the shelf and E. antarctica in the oceanic
domain have identical d13C values. These data do not
agree with the little available information on baseline
levels showing that d13C values of particulate organic
matter are higher in neritic waters than in adjacent
oceanic waters (Trull and Armand, 2001).

4.2.2. Prediction 3
Baseline oceanic d13C value, and thus consumer

d13C signatures, decreases toward higher latitudes
(Trull and Armand, 2001; Cherel and Hobson, 2007;
Jaeger et al., 2010b; Quillfeldt et al., 2010). Accord-
ingly, d13C values of myctophids (E. antarctica,
Gymnoscopelus braueri and P. bolini) are lower off
Adélie Land than off Kerguelen Islands that are located
further north (Cherel et al., 2010). In the Southern
Ocean, the isotopic latitudinal change more likely
occurs stepwise in frontal regions (François et al.,
1993; Trull and Armand, 2001). Hence, lower d13C
values are expected from fishes collected south than
north of the Southern Boundary and the Southern
Antarctic Circumpolar Current Front (SACCF), which
are close together in the sampling area (Orsi et al.,
1995). These two fronts were located at w64�S
offshore Adélie Land and influenced the pelagic fish
community structure during the CEAMARC surveys
(Koubbi et al., 2010). Indeed, E. antarctica had lower
d13C values that all the other oceanic species of which
most (if not all) individuals had been caught north of
64�S. A notable exception is P. bolini, because most
individuals were collected south of the SACCF, but
they retained relatively high d13C values. Since the
stable isotope integrates the fish feeding ecology over
the long-term, the most likely explanation of that
discrepancy is a recent migration of P. bolini across the
SACCF. The single specimen of Paradiplospinus gra-
cilis showed the same pattern: it was caught south of
the SACCF, but its isotopic d13C signature indicates
a past feeding ecology north of it. Such latitudinal
movements within the Southern Ocean were recently
described using stable isotope signatures of various
animals, including squids, seabirds and marine
mammals (Cherel and Hobson, 2005; Cherel et al.,
2009; Jaeger et al., 2010a).

4.2.3. Trophic ranges and trophic structure
Overall the d15N signatures of Antarctic pelagic and

epibenthic fishes encompassed w1.0 trophic level
(3.1&), a higher difference than that (1.4&) found

Fig. 2. Stable carbon and nitrogen isotope values of individuals from

three representative fish species from Adélie Land, Antarctica.

Notothenia coriiceps, Gymnodraco acuticeps and Pleuragramma

antarcticum illustrate a benthic species feeding on benthic prey, a fish

species feeding on both benthic and pelagic prey, and a pelagic

species feeding on pelagic prey, respectively. Notothenia coriiceps

and Gymnodraco acuticeps are two species showing large interin-

dividual variations in their food and feeding ecology (see text). The

linear regression between d15N and d13C values of N. coriiceps

underlines the positive link between carbon and nitrogen baseline

levels that characterize the different fish benthic micro-habitats and/

or diets (y ¼ 0.22x þ 16.89, R2 ¼ 0.367, F1,16 ¼ 9.25, P ¼ 0.008).
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within the oceanic assemblage. These d15N ranges are
relatively small when compared to the trophic structure
of communities elsewhere (Al-Habsi et al., 2008;
Revill et al., 2009). Nevertheless, Antarctic neritic
fishes with low d13C values can be broadly grouped
according to their high and low d15N signatures
(Fig. 1), which correspond to diets mainly based on
fish and crustaceans, respectively (Gon and Heemstra,
1990). Oceanic fishes have low d15N values that are
consistent with a crustacean diet (e.g. myctophids;
Hopkins and Torres, 1989; Gon and Heemstra, 1990),
but some species presented unexpectedly high d15N
signatures for invertebrate feeders (e.g. Bathylagus
spp, Cyclothone microdon and Cynomacrurus piriei;
Gon and Heemstra, 1990; Geiger et al., 2000; Gaskett
et al., 2001). Those fishes are all deep-dwelling species
(Gon and Heemstra, 1990; Moteki et al., 2009) and
their high d15N values can be related to the higher d15N
in zooplankton with increasing depth, a feature that is
explained by more trophic steps between deep-sea
consumers and food web base or/and by a 15N
enrichment of the source material at depth (Laakmann
and Auel, 2010).

Fish isotopic niches illustrate the different mecha-
nisms allowing coexistence. Noticeably, fishes of the
family nototheniids pointed out the importance of both
different habitats (d13C) and diets (d15N), with all
species segregating by at least one isotopic niche axis.
Two exceptions are the epibenthic T. eulepidotus and
the pelagic P. antarcticum that presented identical
isotopic signatures, thus underlining a limitation of the
isotopic method that cannot segregate species living in
different environments but feeding on the same prey.
The relatively low d15N value of P. antarcticum is
nevertheless in agreement with a diet based on
omnivorous crustaceans, e.g. the ice krill Euphausia
crystallorophias (Gon and Heemstra, 1990; Cherel,
2008).

4.2.4. Isotopic generalists and specialists
All the five shallow-living species (G. acuticeps,

N. coriiceps, T. bernacchii, T. hansoni and T. pennellii)
showed large variances in their isotopic signatures.
Since muscle tissue integrates the individual feeding
habits over months preceding sampling, high variances
indicate long-term interindividual differences in the
fish foraging ecology (e.g. N. coriiceps, a species that
is known to feed both on algae and invertebrates;
Hureau, 1970). This biological characteristic was
recently described in other coastal benthic predators
from the Southern Ocean (Bearhop et al., 2006). At the
species and population levels, the five fishes are

considered as trophic generalists and opportunist
feeders (Gon and Heemstra, 1990; La Mesa et al.,
2004). Their isotopic signatures complete the picture
by showing that these generalist populations are
composed of specialist individuals that forage in
different micro-habitats and/or on different food types,
a common but still underestimated feature of many
animal populations (Bolnick et al., 2003). Noticeably,
it is in agreement with the complex mosaic of habitats
that characterizes the coastal benthos of Antarctica
(Thrush et al., 2010). In contrast, isotopic variances
were smaller in pelagic species (e.g. P. antarcticum in
Fig. 2), a feature that is probably related to the more
homogeneous pelagic than benthic environment in
coastal and neritic waters.

4.3. Fishes within the Antarctic trophic web

The d13C signatures of air-breathing predators
living in Antarctica, including Adélie Land, were all
very negative (Hodum and Hobson, 2000; Zhao et al.,
2004; Cherel, 2008; authors’ unpublished data) thus
indicating that they prey almost exclusively upon
pelagic organisms. The only exception is the slightly
more positive d13C value of Weddell seals (authors’
unpublished data), which, accordingly, is known to
include some benthic prey in its diet (Burns et al.,
1998). Consequenly, most of the Antarctic neritic
fishes are not preyed upon by any of the seabirds and
marine mammals, because they belong to the endemic
suborder Notothenioidei, which is principally a benthic
group (Eastman, 1993; La Mesa et al., 2004).

d15N signatures of two key macrozooplanktonic
species and of three diving top predators highlight two
main features about the trophic position of Antarctic
fishes within the pelagic ecosystems off Adélie Land
(Fig. 3). Firstly, fish d15N values are well above (�one
trophic level) those of the mainly herbivorous
Antarctic krill Euphausia superba and omnivorous ice
krill, thus showing that all pelagic fishes are strictly
carnivorous. Secondly, a major result of the present
work is the complete overlap between the d15N
signatures of fish with those of penguins and seals,
indicating that the so-called top predators (seabirds and
marine mammals) share the upper levels of the trophic
web with some large fishes, including channichthyids.
Indeed, the lowest and the highest d15N values corre-
spond to species feeding mainly on crustaceans
(myctophids and Adélie penguin) and on fish (ice-
fishes, and emperor penguin and Weddell seal),
respectively (Gon and Heemstra, 1990; La Mesa et al.,
2004; Cherel, 2008). Depending on species, other
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seabirds and marine mammals also prey upon crusta-
ceans and fish in Adélie Land and elsewhere, with
euphausiids, and P. antarcticum and E. antarctica
playing pivotal roles in the nutrition of top predators in
the high-Antarctic (Ridoux and Offredo, 1989; Ainley
et al., 1991; La Mesa et al., 2004; Smith et al., 2007).

4.4. Conclusions

To our knowledge, this work is the first detailed
isotopic investigation on Antarctic fishes. Overall, the
isotopic niches are in general agreement with the known
life-styles, habitats and diets of fish collected off Adélie
Land and from elsewhere in Antarctica. The isotopic
data however add substantial information to the knowl-
edge of fish in Antarctic waters, e.g. their importance as
top predators in the pelagic ecosystem, and the level of
individual specialization within populations. Neverthe-
less, the isotopic method suffers from some limitations.
Firstly, the isotopic signature does not allow prey iden-
tification at the species level. Secondly, a thorough
interpretation of the isotopic niches necessitates a good
knowledge of the isotopic gradients occurring within the
consumers’ foraging areas (Cherel et al., 2008). Thirdly,
overlaps between the different gradients can lead to
strong misinterpretation of foraging origins (Cherel and
Hobson, 2007). Consequently, the method is at its most

powerful when combined with other conventional (e.g.
food analysis, morphological and anatomical adapta-
tions) and non-conventional (habitat modeling, lipids as
trophic markers) approaches. Importantly, it bypasses
the problems of empty stomachs (e.g. channichthyids,
Acanthodraco dewitti; LaMesa et al., 2004) and of post-
capture feeding in nets. For Antarctic fish, the method is
probably best used to investigate community structure
and poorly known species (e.g. artedidraconids, bathy-
draconids), including rarely caught fish (e.g. D. hunteri,
Gvozdarus svetovidivi; Gon and Heemstra, 1990; La
Mesa et al., 2004). Finally, more isotopic information
is needed on ontogenic changes and on other species
(including the large Dissostichus mawsoni) and areas to
better understand the ecological role of fishes in
Antarctic waters.
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Holm Bay (Indian Ocean sector, Southern Ocean) during austral

summer. Polar Biol. 32, 1461e1472.

Nakamura, Y., Horinouchi, M., Shibuno, T., Tanaka, Y., Miyajima, T.,

Koike, I., Kurokura, H., Sano, M., 2008. Evidence of ontogenetic

migration from mangroves to coral reefs by black-tail snapper

Lutjanus fulvus: stable isotope approach.Mar. Ecol. Prog. Ser. 355,

257e266.

Newsome, S.D., Martinez del Rio, C., Bearhop, S., Phillips, D.L.,

2007. A niche for isotopic ecology. Frontiers Ecol. Environm

5, 429e436.

Orsi, A.H., Whitworth III, T., Nowlin Jr., W.D., 1995. On the

meridional extent and fronts of the Antarctic Circumpolar

Current. Deep-Sea Res. I 42, 641e673.

Pakhomov, E.A., Bushula, T., Kaehler, S., Watkins, B.P.,

Leslie, R.W., 2006. Structure and distribution of the slope fish

community in the vicinity of the sub-Antarctic Prince Edward

Archipelago. J. Fish Biol. 68, 1834e1866.

Polito, M.J., Fisher, S., Tobias, C.R., Emslie, S.D., 2009. Tissue-

specific isotopic discrimination factors in gentoo penguin

(Pygoscelis papua) egg components: implications for dietary

reconstruction using stable isotopes. J. Exp. Mar. Biol. Ecol 372,

106e112.

Post,D.M., Layman, C.A., Arrington, D.A., Takimoto, G., Quattrochi, J.,

Montana, C.G., 2007. Getting to the fat of the matter: models,

methods and assumptions for dealing with lipids in stable isotope

analysis. Oecologia 152, 179e189.

Quillfeldt, P., Masello, J.F., McGill, R.A.R., Adams,M., Furness, R.W.,

2010. Moving polewards in winter: a recent change in the migratory

strategy of a pelagic seabird? Front. Zool. 7, 15.

Revill, A.T., Young, J.M., Lansdell, M., 2009. Stable isotopic

evidence for trophic groupings and bio-regionalization of

predators and their prey in oceanic waters off eastern Australia.

Mar. Biol. 156, 1241e1253.

Rau, G.H., Ainley, D.G., Bengtson, J.L., Torres, J.J., Hopkins, T.L.,

1992. 15N:14N and 13C:12C in Weddell Sea birds, seals, and fish:

implications for diet and trophic structure. Mar. Ecol. Prog. Ser.

84, 1e8.

Rau, G.H., Sweeney, R.E., Kaplan, I.R., 1982. Plankton 13C:12C ratio

changes with latitude: differences between northern and southern

oceans. Deep-Sea Res. 29, 1035e1039.

Ridoux, V., Offredo, C., 1989. The diets of five summer breeding
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adeliae. Mar. Ecol. Prog. Ser. 355, 297e307.

Tieszen, L.L., Boutton, T.W., Tesdahl, K.G., Slade, N.A., 1983.

Fractionation and turnover of stable carbon isotopes in animal

tissues: implications for d13C analysis of diet. Oecologia

57, 32e37.

Trull, T.W., Armand, L., 2001. Insights into Southern Ocean carbon

export from the d13C of particles and dissolved inorganic carbon

during the SOIREE iron release experiment. Deep-Sea Res. II 48,

2655e2680.

Wada, E., Terazaki, M., Kabaya, Y., Nemoto, T., 1987. 15N and 13C

abundances in the Antarctic Ocean with emphasis on the

biogeochemical structure of the food web. Deep-Sea Res.

34, 829e841.

Zhao, L., Castellini, M.A., Mau, T.L., Trumble, S.J., 2004. Trophic

interactions of Antarctic seals as determined by stable isotope

signatures. Polar Biol. 27, 368e373.

297Y. Cherel et al. / Polar Science 5 (2011) 286e297




