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d Laboratoire d’Océanologie et de Géosciences, UMR 8187, Université du Littoral Côte d’Opale, 32 avenue Foch, 62930 Wimereux, France

eUniversité d’Artois, IUFM Nord-Pas de Calais, Centre d’Outreau, 10 rue Hippolyte Adam, 62230 Outreau, France
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Abstract
The feeding ecology of the notothenioid fish Pleuragramma antarcticum was studied in the Dumont d’Urville Sea (East
Antarctica) near the French Antarctic station. Stable isotopes (d13C and d15N) and diet contents were used in order to study dietary
shifts between fish larvae and juveniles. All specimens had low d13C values (<�24&), a main characteristic of high-Antarctic
pelagic species. Fish larvae showed differences in both carbon and nitrogen ratios when compared with juveniles. Muscle d15N
values showed a difference of one trophic level (w3&) between larvae (6.7&) and juveniles (9.7e10.0&) and a trophic position of
tertiary consumers. Diet content analyses (stereomicroscope and scanning electron microscopes) indicated that larvae are
omnivorous, feeding on phytoplankton (mainly diatoms) as well as on zooplankton species. A positive relationship between d15N
values and size was found and indicated a carnivorous diet for older specimens.
� 2011 Elsevier B.V. and NIPR. All rights reserved.
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1. Introduction

Pleuragramma antarcticum, also known as the
Antarctic silverfish, is the most abundant pelagic fish
species in the high-Antarctic shelf waters of the
reserved.
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Southern Ocean (Hubold, 1984). Its entire life cycle is
pelagic with a long larval phase of over one year.
Spawning is thought to occur in late wintereearly
spring with eggs hatching in NovembereDecember
(Koubbi et al., 2011; Vacchi et al., 2004). Larvae are
found throughout the water column but are more
abundant in the upper water layers (w200 m), while
juveniles and adults are often distributed at greater
depths (Granata et al., 2009). This spatial segregation
pattern is probably an important feature to avoid
intraspecific competition (Hubold, 1985) and ensures
the survival of the species. P. antarcticum acts as
a direct link between herbivorous/omnivorous meso-
zooplankton and higher levels of the trophic web
because it is consumed by a variety of predators such
as birds, fish and marine mammals (Cherel, 2008;
Eastman, 1985; Koubbi et al., 2009; La Mesa et al.,
2004). Along with krill species, this micronektonic
species has a mid-trophic level that might exert
a “wasp-waist control” in the neritic Antarctic
ecosystem with a topedown control on meso-
zooplankton and a bottomeup control on top predators
(Cury et al., 2000).

Biologists have long relied upon gut content anal-
ysis to investigate predatoreprey interactions (Hysop,
1980) as this approach gives a “snapshot” on prey
items eaten at a particular time. From this method,
P. antarcticum larvae have mostly been documented as
feeding on zooplankton species, mainly copepods
(Granata et al., 2009; Hubold and Hagen, 1997;
Kellermann, 1987; Takahashi and Nemoto, 1984) but
also on phytoplankton (Koubbi et al., 2007; Vallet
et al., 2011), while juveniles have been documented
as feeding upon copepods, euphausiids, amphipods and
even chaetognaths (Hubold, 1985; Hubold and Ekau,
1990). An indirect approach using the stable isotope
method has also been used over the past 30 years to
elucidate patterns in food-webs. The value of this
application is the fact that stable isotopes ratios of
consumers reflect those of their diet in a predictable
manner (Fry, 1988; Hobson and Clark, 1992; Rau
et al., 1982; Wada et al., 1987). Carbon and nitrogen
isotope compositions (d13C and d15N) differ between
organisms and their prey because of a selective reten-
tion of heavy isotopes and excretion of the light
isotopes (Michener and Schell, 1994). Because stable
isotopes dynamics are a long-term process, the stable
isotope ratio in tissue reflects the diet over a period
from weeks to months, depending on the protein
turnover rate of the analysed tissues (Tieszen et al.,
1983). In the case of fish muscle samples, this
temporal integration is estimated to be amount to
several days to months depending on fish growth rates
(Herzka, 2005).

Stable-carbon signatures (d13C) vary little along the
food chain, approximately 0.8& per trophic level
(Minagawa and Wada, 1984; Owens, 1987) and are
mainly used to indicate the foraging habitats of pred-
ators, including fish. Carbon values have been used to
characterize fish habitat in marine ecosystems and
discriminate between inshore/benthic species from
offshore/pelagic species (Cherel et al., 2011; Pinnegar
and Polunin, 2000). In estuarine ecosystems, d13C
values differentiate fish from the upper, middle and
lower zones of the estuary (Pasquaud et al., 2008;
Riera and Richard, 1996) and are also a useful tool
to investigate fish movements and migrations
(Bardonnet and Riera, 2005; Limburg, 1998). Stable-
nitrogen signatures (d15N) are mainly used to estab-
lish trophic relationships (Hobson and Montevecchi,
1991; Hobson and Welch, 1992; Rau et al., 1982).
These results support the generalization that, on
average, a 3& enrichment in d15N values accompanies
each trophic step (DeNiro and Epstein, 1981; Garcia
et al., 2007; Michener and Schell, 1994; Peterson and
Fry, 1987; Tieszen and Boutton, 1989). This enrich-
ment could be explained by the fractionation of
nitrogen isotopes during the production of ammonia,
urea or uric acid. 14N is preferentially excreted
(Minagawa and Wada, 1984) and consequently, a high
ratio of nitrogen isotopes indicates a high trophic
position (Hobson and Welch, 1992).

The Antarctic silverfish probably undergoes onto-
genic changes in diet, and may therefore occupy
a number of trophic levels in the course of their life
history, as demonstrated for other fish species (Polis and
Strong, 1996). Also from otolith analysis, P. antarcti-
cum is believed to have a planktonic existence for the
early part of its life, and then to switches to an offshore
pelagic life style (Radtke et al., 1995). Food reso-
urce partitioning was documented between larval and
one year old juvenile using gut content analysis
(Kellermann, 1987) demonstrating that both develop-
mental stages fed on different size fractions of
zooplankton with negligible overlap. Zooplankton taxa
that have been documented as part of the diet of
P. antarcticumwere considered in this study as potential
prey. Other Antarctic species such as chaetognaths,
jellyfish and polychaetes have been documented as
carnivorous (Froneman and Pakhomov, 1998) and were
studied as potential competitors for P. antarcticum. By
combining gut content and stable isotope approaches the
authors wanted to determine (1) diet shifts between
P. antarcticum larvae and juveniles, (2) the trophic
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position of larvae and juveniles and their relationship in
the East Antarctic food-web ecosystem, and (3) finally,
whether larvae and juveniles foraging in different
habitats as suggested by previous analysis.

2. Materials and methods

2.1. Sampling

Samples were collected in the Dumont d’Urville
Sea (East Antarctica) during the international CEA-
MARC surveys (Collaborative East Antarctic Marine
Census) of the Census of Antarctic Marine Life and the
French IPEV-ICO2TA programme (Integrated Coastal
Ocean Observations) in Terre Adélie.

Fish samples were collected during the austral
summer 2007e2008 from the Japanese TRV Umitaka
Maru using pelagic trawls (International Young
Gadoid Pelagic Trawl, IYGPT, and Rectangular
Fig. 1. Sampling stations during the cruises of the Umitaka Maru in 2008 a

and (b) stable isotopes analysis (504e516). Larvae are represented by squa

by black points. AD ¼ Adélie Depression. MGT ¼ Mertz Glacier Tongue
Midwater Trawl, RMT). Samples were collected at
nine stations along a transect from the Mertz Glacier
Tongue (MGT) to the Adélie Bank. Stations 10e12
and 24e27 were used for gut content analysis and
stations 10e13, 24 and 42 for stable isotopes (Fig. 1).
Fish were sorted and identified on board and measured
to the nearest 0.1 mm with a digital caliper (standard
length, SL) at the laboratory before analysis. P. ant-
arcticum up to 30 mm SL were considered as larvae
and individuals between 30 and 100 mm SL as juve-
niles (Kellermann, 1987; Koubbi et al., 2011). Samples
were kept in 70% ethanol for stable isotope analysis
and in 5% buffered formalin for gut content analysis.
Potential prey (phytoplankton, copepods, euphausiids,
and amphipods), competitor species (jellyfish, chaeto-
gnaths, polychaetes) and some P. antarcticum larvae
(n ¼ 15) were collected with the French RV l’Astro-
labe in January 2010 with an Isaacs-Kidd Midwater
Trawl (IKMT), bongo nets and WP2 nets. Zooplankton
nd l’Astrolabe in 2010. Sampling stations for (a) gut content (10e42)
res, and juveniles by black stars. Zooplankton species are represented

.
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were kept in 70% ethanol. For phytoplankton, water
from a depth of 5 m was collected with Niskin bottles
in January 2010 and filtered on Whatman type F glass-
fiber filters pretreated at 450 �C for several hours and
stored frozen at �80 �C until analysis.

2.2. Stable isotopes analysis

The isotopic signatures of P. antarcticum, phyto-
plankton, zooplankton prey and competitor species
were determined with different preparations depending
on the analysed tissue. For P. antarcticum, a total of
144 specimens from different size classes and from six
sampling stations were studied. Lateral muscle
samples were removed from juveniles (n ¼ 76) and
whole specimens were used for larvae (n ¼ 68).
Because of the small size of some zooplankton
Table 1

Fish and zooplankton sampling from the Umitaka Maru (2008) and l’Astrol

Stable isotopes

Species n SL (mm) Tissue

Fish

Pleuragramma antarcticum

Small larvae (l’Astrolabe) 15 10.1 � 0.6 Whole body (fiv

Larvae (Umitaka Maru) 53 19.1 � 2.5 Whole body

Juveniles (Umitaka Maru) 76 74.3 � 15.0 Muscle

Potential prey species (l’Astrolabe)

POM (Phytoplankton) 3 e Filters

Amphipod

Themisto gaudichaudii 1 16.8 Whole body

Copepods

Paraeuchaeta antarctica 10 w10 Whole body (poo

Euphausiid

Euphausia crystallorophias

Larvae 3 9.9 � 0.4 Whole body

Juveniles 3 30 � 0.2 Whole body

Mollusc

Thecosomes pteropods 6 17.1 � 1.4 Whole body

Gymnosome pteropods 1 8 Whole body

Competitors (l’Astrolabe)

Chaetognath

Eukrohnia hamata 3 47.6 � 1.8 Whole body (poo

Sagitta gazellae 4 80.9 � 1.0 Whole body

Cnidarian

Jellyfish 1 e Tentacle

Jellyfish 1 e Tentacle

Jellyfish 1 e Tentacle

Siphonophores 3 24.7 � 0.4 Whole body

Polychaete

Tomopteris sp. 1 81.2 Small fraction
organisms like the copepods Paraeuchaeta antarctica,
the chaetognath Eukrohnia hamata and some P. ant-
arcticum larvae, two to 10 individuals were pooled
together (Table 1).

All samples were dried for at least 36 h at þ50 �C
and grounded to a fine powder. Following Cherel et al.
(2011) lipids were extracted using cyclohexane. The
C:N is related to lipid content in animal tissues (Post
et al., 2007). Because lipids are depleted in 13C when
compared to proteins and carbohydrates (DeNiro and
Epstein, 1978; Tieszen et al., 1983) delipidated
samples allowed comparing the carbon isotopic
signature without any deleterious effect due to different
lipid contents among individuals and species. C:N
values <4 indicate low lipid contents that do not
influence the d13C signatures (Post et al., 2007).
Copepod, euphausiid, pteropod and amphipod samples
abe (2010) cruises for stable isotope analysis.

Sampling stations Date (jj/mm/yyyy)

e larvae pooled) AS 508 (St. 12)

AS 516

13/01/2010

21/01/2010

10e13, 24, 42 06/02/2008e11/02/2008

10e12, 42 06/02/2008e11/02/2008

AS 507

AS 514

AS 516

12/01/2010

19/01/2010

21/01/2010

AS 504 11/01/2010

led) AS 512 17/01/2010

AS 513 17/01/2010

AS 513 17/01/2010

AS 504 11/01/2010

AS 504 11/01/2010

led) AS 504 11/01/2010

AS 504 11/01/2010

AS 512 17/01/2010

AS 509 14/01/2010

AS 508 13/01/2010

AS 504 11/01/2010

AS 512 17/01/2010
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were acidified afterwards with 1N HCl to remove
carbonates from their exoskeleton. Carbonates were
also removed from the phytoplankton filters using
fuming HCl. Additionally, a small fraction of the filters
was observed under an inverted microscope revealing
that most of the items were diatoms, with no
zooplankton species found in the analyzed fraction.
Once lipids and carbonates had been extracted,
samples were dried again for several hours.

Relative abundance of 13C and 15N were determined
using an Isoprime (Micromass) continuous-flow
isotope-ratio mass spectrometer. Stable isotope
concentrations are expressed in delta (d) notation and
calculated as:

dX ¼
��

R sample

R standard

�
� 1

�
� 1000

where X ¼ 15N or 13C and R is the corresponding ratio
15N:14N or 13C:12C. R standard for 13C and 15N are the
PDB (PeeDee belemnite) standard and atmospheric N2,
respectively. Replicate measurements of internal labo-
ratory standards (acetanilide) indicate measurement
errors <0.15& for d13C and <0.20& for d15N.

Trophic level (TL) was calculated using the equa-
tion proposed by Wada et al. (1987) for Antarctic
ecosystems:

TL¼ 1þ d15Nanimal� d15Nalgae

3:2

where TL is the trophic level of a consumer, d15Nanimal
is the d15N value of the consumer’s tissue (&) and
d15Nalgae is the d15N value of phytoplankton. The
value 3.2 is the mean d15N increases in fish muscle
proposed by Sweeting et al. (2007).

2.3. Gut content analysis

The gut contents of 54 larvae (stations 10e12,
24e27) and 15 juveniles (stations 10, 12, 25) (Fig. 1a)
were analysed. The whole digestive tract was removed
from fish under a stereomicroscope and opened. Larger
prey were identified with a stereomicroscope and
microplankton were identified with Scanning Electron
Microscope (SEM). For SEM, food items of each
specimen were rinsed with Milli-Q water (Millipore)
and filtered on 0.2 mm filter (Millipore polycarbonate)
which was put on a carbon tape attached to a metal
stub (25 mm diameter) according to Vallet et al.
(2011). Stubs were dried under laminar flow hood
during 24 h and then palladiumegold-coated (Polaron
SC7620) and observed with a LEO SEM (438VP).
Microplankton genus identification was made accord-
ing to Scott and Marchant (2005). Some prey items
were not identified to the species level, owing to their
advanced state of digestion; they were therefore
referred to as unidentified diatoms, dinoflagellates or
eggs.

Observations were coded as presence/absence and
the number of species present in gut (n) was calculated.
The frequency of occurrence (%F) was designed as
follows:

%F ¼
�
Si

S

�
� 100

where Si is the number of individuals in which the
species i was present and S the total number of indi-
viduals analysed.

2.4. Statistical analysis

Spatial variability in stable isotopes results for
larvae and juveniles was tested using KruskaleWallis
and KolmogoroveSmirnov tests. For fish larvae, only
stations with more than 5 specimens were tested
(stations 10e12, 24). Stations 13 and 42 had very few
larvae individuals and were not taken into account for
this part of the analysis. Juveniles were collected in
four samples (stations 10e12, 42), with more than 15
individuals at each of them, hence all sampling stations
were tested.

3. Results

3.1. Size classes

Fish were between 8.7 and 95.8 mm SL. The size
class distribution of larvae collected in 2008 and 2010
were significantly different (KolmogoroveSmirnov
test, P < 0.05) with an average standard length (SL) of
10.1 � 0.6 mm for individuals collected in 2010 and of
19.1 � 2.5 mm SL for those collected in 2008. For
comparison, samples from 2010 are referred in this
study as “small larvae” and samples from 2008 only as
larvae. Juveniles had an average SL of
74.3 � 15.0 mm.

3.2. Stable isotope analysis

3.2.1. Pleuragramma antarcticum
Nitrogen values ranged from 7.2& for fish larvae to

10.1& for fish juveniles (Fig. 2, Table 2). There was no
significant difference in d15N values between “small
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Fig. 2. Nitrogen isotopic signature of early life stages of P. antarc-

ticum. The upper and lower bars of the box represent the first and

third quartiles, respectively. Therefore, the length of the box equals

the interquartile range (IQR). The horizontal line inside the box

indicates the location of the median. Vertical lines are drawn from

each side of the box and extend to the most extreme observations that

are no farther than 1.5 IQRs from the box. Observations farther than

1.5 IQRs from the box are shown as individual points.

Table 2

Isotopic signature of Pleuragramma antarcticum, potential prey and

competitor species. Values are given as X � SD in&. Three different

but unidentified species of jellyfish were analyzed, the AS (number)

refer to l’Astrolabe cruise and the sampling station.

Species Age d15N (&) d13C (&) C:N

POM

(Phytoplankton)

2.0 � 0.2 �29.5 � 0.2 5.4 � 0.2

Fish

Pleuragramma

antarcticum

Small

larvae

7.8 � 0.1 �25.0 � 0.0 3.2 � 0.0

Larvae 7.2 � 0.4 �26.6 � 0.7 3.1 � 0.0

Juveniles 10.1 � 0.4 �25.3 � 0.2 3.2 � 0.0

Potential prey

species

Amphipods

Themisto

gaudichaudii

Adults 9.2 �26.2 3.7

Copepods

Paraeuchaeta

antarctica

Adults 10.2 �25.6 3.5

Euphausiids

Euphausia

crystallorophias

Juveniles 6.9 � 0.1 �24.4 � 0.0 3.5 � 0.0

Euphausia

crystallorophias

6.4 � 0.2 �27 � 0.1 4.1 � 0.0

Molluscs

Thecosomes

pteropods

e 4.3 � 0.6 �25.7 � 0.4 3.6 � 0.0

Gymnosome

pteropods

e 6.2 �25.0 3.5

Competitors

Chaetognaths

Eukrohnia

hamata

e �25.5 � 0.0 8.1 � 0.1 3.3

Sagitta

gazellae

e �24 � 0.8 9.2 � 0.5 3.2 � 0.0

Cnidarians

Jellyfish

(AS 512)

e �24.0 8.9 3.3

Jellyfish

(AS 509)

e �24.0 9.3 3.0

Jellyfish

(AS 508)

e �24.4 5.3 3.0

Siphonophores e �23.9 � 0.4 6.6 � 0.9 3.1
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larvae” and larvae (Mann-Whitney-Wilcoxon test,
W ¼ 3.17, P > 0.05). Juveniles were segregated from
larvae stages (KruskaleWallis test, H ¼ 96.3 P < 0.05)
with a difference of w3& in d15N values reflecting
one trophic level of difference between these devel-
opmental stages.

A positive relationship was also found between
length (SL, mm) and d15N of P. antarcticum (logarithm
regression model, coefficient of regression 2, correla-
tion coefficient 0.90, R2 ¼ 81.6, Fig. 3). The following
equation is derived from the model:

d15N¼ 1:5þ 2� In ðSLÞ

Carbon values were low for all specimens; d13C
ranged from �26.4 to �23.4&, with larvae having the
greatest range of values compared to juveniles. Average
d13C values were �25&, �26.6& and �25.3& for
small larvae, larvae and juveniles, respectively. A
significant difference was found between “small larvae”
and larvae in d13C values (Mann-Whitney-Wilcoxon
test, W ¼ �60.5, P < 0.05) (Fig. 4, Table 2). Larvae
were also segregated when compared to juveniles and
small larvae simultaneously (KruskaleWallis test,
H ¼ 25.75, P < 0.05) (Fig. 4, Table 2).

There was a significant difference in d13C values
between sampling stations reflecting spatial variability,
for both larvae (KruskaleWallis test, H ¼ 32.41,
P < 0.05) and juveniles (KruskaleWallis test,
H ¼ 26.28, P < 0.05).

3.2.2. Potential prey and competitor species
The isotopic signature of potential prey and

competitor species is summarized in Table 2.
The nitrogen isotopic signature of phytoplankton
fromwater samples was 2.8&. For zooplankton species,
nitrogen values enclosed a 5.9& difference and ranged
from 4.3& for thecosome pteropods (Clio sp.) to 10.2
for the large copepod Paraeuchaeta antarctica. The
euphausiid Euphausia crystallorophias and gymno-
some pteropods had average values around 6&. The
amphipod Themisto gaudichaudii, and the chaetognaths
Sagitta gazellae and E. hamata had all d15N values
>8& and jellyfish had d15N values from 5.3 to 9.3&.
Nitrogen values were significantly different between
species (KruskaleWallis test, H ¼ 25.70, P < 0.05).



Fig. 5. Isotopic signature of P. antarcticum and of its potential prey.
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Fig. 3. Logarithm regression model between d15N and standard

length (SL). The plot shows the least squares regression line and two

sets of limits. The inner limits provide 95% confidence intervals. The

outer dotted lines are 95% prediction limits for new observations.

Table 3

Trophic level of Antarctic organisms.

Trophic level (TL) Organisms TL values

1 POM Phytoplankton (diatoms) 1

2 Herbivores,

zooplankton

Thecosome pteropods (Clio sp.) 1.5
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Average carbon values of phytoplankton were
�29.5&. Zooplankton species enclosed a 2.3& d13C
difference from �26.2& for T. gaudichaudii to
�23.9& for siphonophores. Two groups were segre-
gated by d13C: the first group had average d13C values
around �24& (cnidarians, S. gazellae, E. crystallor-
ophias) and the second group had average d13C values
>24& (gymnosomes, T. gaudichaudii, thecosomes,
Paraeuchaeta antarctica and E. hamata) (Krus-
kaleWallis test, H ¼ 22.75, P < 0.05) (Fig. 5).

Trophic levels (TL) ranged from 1.5 for herbivores
thecosome pteropods (Clio sp.) to 3.2 for carnivorous
species such as P. antarcticum juveniles or the copepod
Paraeuchaeta antarctica. P. antarcticum larvae show
a TL of 2.5 (Table 3).

3.3. Gut content analysis

A total of 69 P. antarcticum gut contents were
analyzed. From the 54 gut contents of fish larvae only
two were empty (less than 4%), and from the 15
Small_Larvae Larvae Juveniles
-27

-26

-25

-24

-23

elcsu
M

31
)

‰(
C

Fig. 4. Carbon isotopic signature of early life stages of P.

antarcticum.
juvenile’s gut contents only one was empty (6.6%). In
fish larvae, 23 taxa of phytoplankton, 2 taxa of
zooplankton and 1 of protozoan were identified. Dia-
toms of the genus Fragilariopsis spp. and unidentified
eggs were the most frequently prey observed, with
70.4% and 50.0% frequency of occurrence (%F),
respectively. Another frequently encountered food
items were diatoms of the genus Chaetoceros spp. and
Thalassiosira spp., both with average values of 40%F.
Copepods and dinoflagellates had average values
>20%F.

For P. antarcticum juveniles, nine families of
phytoplankton, some copepod species and unidentified
Jellyfish AS 508 1.7

Gymnosome pteropods 2.0

Siphonophores 2.1

Euphausia crystallorophias 2.4

Euphausia crystallorophias

(juvenile)

2.5

3 Carnivores,

zooplankton

P. antarcticum larvae 2.6

P. antarcticum larvae (small) 2.8

Eukrohnia hamata 2.6

Jellyfish AS 512 2.8

Tomopteris sp. 2.9

Themisto gaudichaudii 2.9

Sagitta gazellae 2.9

Jellyfish AS 509 3.0

P. antarcticum Juveniles 3.2

Paraeuchaeta antarctica 3.2
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eggs were present. Some of the copepods that we were
able to identify belong to the genera Oithona and
Oncaea and to the Calaniidae family (Table 4). Dia-
toms of the genus Fragilariopsis spp. were still
frequently encountered (66.6%F). Large copepods and
planktonic eggs were found in 50e60% of the gut
analyzed.

4. Discussion

4.1. Foraging habitat

Low d13C values in all developmental stages were
characteristic of high-Antarctic pelagic species
(Cherel, 2008; Zhao et al., 2004). Although slightly
significant differences were found between sampling
stations for each developmental stages, it was not clear
whether these differences had an ecological meaning
or if they were a sampling/analysis artefact since the
number of fish samples varied for each station. It has
been suggested that there is little variation in POM
d13C signatures within a given water mass and abrupt
Table 4

Diet composition of P. antarcticum larvae and juveniles from gut content anal

occurrence.

Species

Phytoplankton Diatoms Actinocyclus spp.

Asteromphalus spp.

Chaetoceros spp.

Coccoliths

Corethron pennatum

Coscinodiscus spp.

Cryptophyceae

Eucampia spp.

Fragilariopsis spp.

Halsea sp.

Nitzschia spp.

Proboscia

Pseudonitzschia spp.

Rhizosolenia antennata

Scrippsiella troichoide

Stellarima microtrias

Thalassiosira spp.

Thalassiothrix antarcti

Trichotoxon spp.

Unidentified Diatoms

Dinoflagellates Unidentified Dinoflage

Choanoflagellates

Nanoflagellates

Protozoans

Silicoflagellates Dictyocha speculum

Zooplankton Copepods Calaniidae family

Appendicularians

Eggs

Gasteropods Limacina spp.
changes at fronts (Cherel and Hobson, 2007). Stations
11 and 12 located close to the Adélie Depression, were
significantly different by d13C values. Fish larvae were
also segregated from juveniles and presented a greater
range of d13C values. Larvae were found throughout
the water column but were most abundant in surface
waters while juveniles and adults were present only in
deeper waters (Granata et al., 2009). As suggested by
otolith analysis, P. antarcticum migrates into deeper
waters as it matures and is thought to move between
diverse hydrographic conditions (migration between
inshore and offshore areas) (Radtke et al., 1995).
Vertical and horizontal distribution patterns may be
related to d13C variability, and a corresponding shift in
diet suggests a different foraging habitat between
larvae and older stages. Cherel et al. (2011) from
the same study area show that d13C values of
P. antarcticum adults were slightly higher in specimens
caught near the bottom than the ones from pelagic
trawls, which agrees with adult P. antarcticum living in
the deep and occasionally feeding near the bottom
(Eastman, 1985).
ysis observed with Scanning ElectronMicroscope. %F¼ Frequency of

%F larvae (n ¼ 54) %F juveniles (n ¼ 15)
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4.2. Trophic relationships

There was a positive relationship between length
and d15N of P. antarcticum. Similar results have been
found for other fish species and are often attributed to
either ontogenic changes in diet or a differential
metabolic fractionation of nitrogen isotopes with age
(Melville and Connolly, 2003; Beaudoin et al., 1999).
A difference of about 3& in d15N values between
larvae and juveniles suggested one trophic level of
difference between them. This hypothesis is supported
by our results in gut content analysis and also by other
methods such as lipid biomarkers. Fatty acids showed
a strong omnivory for larvae, Calanus type markers for
juveniles and euphausiid markers for older stages
(Mayzaud et al., 2011). SEM and trophic level calcu-
lation showed that P. antarcticum larvae were omniv-
orous; the diet was not only composed of zooplankton
(mainly copepods) but also phytoplankton species
(mainly diatoms from the genus Fragilariopsis) as
found by Vallet et al. (2011). The contribution of
primary producer to the diet of fish larvae explains the
lower d15N values when compared to juveniles or
strictly carnivorous species. Even if some phyto-
plankton cells were still observed in the gut content of
the juvenile, the larger zooplankton prey such as
copepods (mainly calanoids up to 3 mm length), and
chaetognaths were also frequently encountered. The
isotopic signature of P. antarcticum adults from the
same cruise is documented by Cherel et al. (2011).
There were no differences in nitrogen values between
juveniles and adults reflecting a carnivorous/
zooplankton diet for older stages. The average d15N
value of P. antarcticum juveniles/adults off Adélie
Land (Cherel, 2008; Cherel et al., 2011; this study) was
similar to the nitrogen signature of specimens collected
in other regions of the Southern Ocean (Burns et al.,
1998; Hodum and Hobson, 2000) suggesting no
major differences in the foraging ecology of the
species over all of the Antarctic shelf, as already
suggested by Cherel (2008).

The zooplanktonic d15N values were in close
agreement with diet composition documented from
others approaches, such as gut content analysis or lipid
biomarkers. Euphausiids have been extensively docu-
mented as part of the diet of P. antarcticum juveniles
(Hubold, 1985; Hubold and Ekau, 1990; Kellermann,
1987; Takahashi and Nemoto, 1984). Lipid
biomarkers (Mayzaud et al., 2011) suggest a gradual
and increasing shift from a copepod dominant diet for
young juveniles to a euphausiid dominant diet for older
juveniles. The isotopic signature of the two dominant
euphausiid species from the Adélie Land coastal
waters (E. crystallorophias and Euphausia superba,
this study and Cherel, 2008) reflects a herbivorous/
omnivorous diet for both species. E. crystallorophias
has been reported as being herbivorous when phyto-
plankton are abundant, but it has been suggested that it
may efficiently switch to alternate food items such as
copepods, ice algae or detritus. As Calanus type
copepods are also herbivorous/omnivorous depending
on the species, the isotopic signature of calanoids and
euphausiids are probably similar explaining why there
is no difference between juveniles and adults using the
stable isotopes approach. This finding underlines one
of the limits of this method, since two or more different
prey species can have the same isotopic signature; thus
precluding the specific identification of the prey.

The large copepod Paraeuchaeta antarctica showed
the greatest d15N values. Paraeuchaeta antarctica has
been reported to be a carnivorous species (Hopkins,
1987; Bocher et al., 2000) which is equipped with
a pair of feeding appendages allowing it to capture
smaller copepods and to rip pieces out of zooplankton
organisms that are much larger than themselves
(Michels and Schnack-Schiel, 2005). Some of the
Paraeuchaeta antarctica documented prey were small
species such as the copepods Oncaea spp. or Micro-
calanus pygmaeus, but also larger species such as
Metridia gerlachei. Paraeuchaeta antarctica d15N
values and trophic level (TLw3) were almost identical
to those of P. antarcticum juveniles and adults.
Therefore, it seems unlikely that Paraeuchaeta
antarctica could be a potential prey of P. antarcticum
juveniles or adults since results suggested that these
two species fed on prey within the same trophic level
and could be considered as competitors.

The hyperiid amphipod T. gaudichaudii, is one of
the most common pelagic amphipods of the Southern
Ocean (Bocher et al., 2001). It has been recognized as
an obligate carnivore and consumes mostly copepods,
euphausiids and pteropods (Hopkins, 1985; Pakhomov
et al., 1996). T. gaudichaudii had d15N values slightly
lower than P. antarcticum juveniles or adults suggest-
ing that it preys upon lower trophic level organisms.
More recently, lipid biomarkers indicate that an indi-
rect source of phytoplankton was present in the lipid
signature of T. gaudichaudii. This observation may
reflect that their food (such as salps) are herbivorous
and support stable isotope results (Nelson et al., 2001).

Chaetognaths were documented as part of the gut
content analysis of juveniles (Hubold, 1985;
Kellermann, 1987) but they are also known as impor-
tant predators, hence their classification here as
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“competitors”. The two dominant chaetognaths in our
study area were E. hamata and S. gazellae. They have
been documented to be opportunistic predators gener-
ally feeding on the most abundant prey, copepods.
However, d15N values of these two species revealed
a slight difference between them, suggesting that prey
items from a greater trophic level are part of the larger
S. gazellae’s diet. Gut content analyses strengthened
this hypothesis (Froneman and Pakhomov, 1998).
While both species mainly prey upon copepods
(mainly Oithona spp., Calanus spp. and Rhincalanus
gigas), S. gazellae appeared to consume a wider
variety of prey such as pteropods (Limacina spp.) and
chaetognaths (Froneman et al., 1998) which could
explain the d15N differences.

Jellyfish and siphonophores are carnivorous
zooplankton species. Nitrogen values between 5.2 and
9.2& reflect important differences in diet composition
among species. The d15N levels of P. antarcticum
juveniles were generally similar to those of jellyfish,
indicating that both groups occupied a similar trophic
level within the pelagic ecosystem.

The plasticity in diet is an important feature to
establish species’ survival and responses to climate
change. The existence of omnivory would facilitate
adaptation of consumers to spatial and temporal vari-
ability of plankton (Tenore et al., 1995). The key role
of P. antarcticum over the Antarctic shelf may be
comparable to the role of other fish like anchovy or
sardines in other regions, and myctophid fish in
oceanic waters worldwide. The North Iberian sardine
(Sardina pilchardus) had d15N values around 10e12&
with no difference between juveniles and adults (Bode
et al., 2004). These values were similar to those of
P. antarcticum juveniles, but since a trophic baseline
was not available in the European study, a direct
comparison in terms of trophic level was difficult to
establish.

5. Conclusion

The combination of fish gut content analysis and the
measurement of stable isotopes were a powerful tool to
examine dietary changes that occur during the ontogeny
of the Antarctic silverfish. This study underlines the
importance of using the two methods simultaneously,
since each method provides a level of resolution that
cannot easily be achieved by the other one (Clarke et al.,
2005). Both approaches agree with a shift from omniv-
orous/herbivorous P. antarcticum larvae to a carnivo-
rous/zooplankton diet for juveniles and adults. The
trophic position among species was characterized by
a continuum, with fish larvae and juveniles occupying
the tertiary consumers level. d13C values were in
agreement with high-Antarctic pelagic ecosystems, but
it was unclear why fish larvae had a greater variability
when compared to juveniles or adults. Larvae stages
probably require greater flexibility in order to survive
during this critical point of development.
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waters during summer 2004. Polar Sci. 5 (2), 239e251.

Wada, E., Terazaki, M., Kabaya, Y., Nemoto, T., 1987. 15N and 13C

abundances in the Antarctic Ocean with emphasis on the

biochemical structure of the food web. Deep-Sea Res. 34,

829e841.

Zhao, L., Castellini, M.A., Mau, T.L., Trumble, S.J., 2004. Trophic

interactions of Antarctic seals as determined by stable isotope

signatures. Polar Biol. 27, 368e373.


	 Ontogenic changes in the feeding ecology of the early life stages of the Antarctic silverfish (Pleuragramma antarcticum) do ...
	1 Introduction
	2 Materials and methods
	2.1 Sampling
	2.2 Stable isotopes analysis
	2.3 Gut content analysis
	2.4 Statistical analysis

	3 Results
	3.1 Size classes
	3.2 Stable isotope analysis
	3.2.1 Pleuragramma antarcticum
	3.2.2 Potential prey and competitor species

	3.3 Gut content analysis

	4 Discussion
	4.1 Foraging habitat
	4.2 Trophic relationships

	5 Conclusion
	 Acknowledgements
	 References


