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INTRODUCTION

In natural habitats, individual fitness directly de -
pends on animals’ ability to acquire resources in an
efficient way (Stevick et al. 2002). While foraging,
predators often display movement patterns at multi-
ple spatial and temporal scales that are assumed to
match the spatial structure of their prey environ-
ment (Fauchald 1999). Therefore, it is expected that
movement analysis can reveal profitable patches
used by an animal (Turchin 1991). In a prey-aggre-
gated environment such as the open ocean, it is pre-

dicted that a predator having already captured a
first prey would intensify its foraging in the patch
(Charnov 1976, Parker & Stuart 1976). This results
in a behaviour called the area-restricted search
(ARS, Kareiva & Odell 1987) and is defined by a
decrease in speed and an increase in sinuosity of
movement (Benhamou & Bovet 1989). Between 2
patches, on the other hand, the forager travels more
linearly and at a faster pace. Therefore, track-based
measurements of free-ranging predators are
thought to provide information on their foraging
behaviour.
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seals significantly increased. With or without an environmental covariate, HMMs were the most
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significantly increased their body condition given a 4 d metabolisation lag.
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In recent decades, technical advances in wildlife
telemetry have enabled the study of animals’ move-
ment patterns in both the terrestrial and marine envi-
ronments (Buechner et al. 1971, White & Garrott
1990, Block et al. 2001). Increasingly, satellite tele -
metry (using the Argos system) and GPS (Global Po-
sitioning System) technologies yield high quality
tracking time series. For both Argos and GPS de vices,
however, batteries have a limited lifespan and are de-
signed to last for a specific number of ac quisitions
and/or transmissions. Argos devices allow the collec-
tion and emission by satellite of month-long, but
noisy, recordings. This data resolution, low sampling
frequency and low spatial resolution, will be referred
to in the manuscript as the Argos data resolution. On
the other hand, GPS devices combine a very high
sampling frequency with a high spatial resolution
(95% of records with an uncertainty lower than 50 m).
However, the life expectancy of GPS devices is short
and generally does not allow data transmissions by
satellite, making it necessary to retrieve the GPS de-
vice to obtain high resolution tracking data. This
compromise, typically between accurate, frequent
and power-consuming GPS locations and less precise,
less frequent but longer recordings of Argos locations,
has direct implications for tracking data analysis.

Filtering of measurement errors, for Argos locations,
and detection of changes in movement and foraging
behaviour are 2 main issues in tracking data analyses.
Recently, a growing number of analytical methods
have been developed to deal with one or both of these
issues (Fauchald & Tveraa 2003, Buckland et al. 2004,
Jonsen et al. 2005, Patterson et al. 2010, among oth-
ers). To identify intensively used areas along preda-
tors’ tracks 2 types of approaches can be distin-
guished: descriptive methods and  process-based
models. In the ARS context, empirical descriptors,
such as step length or turning angles, play a key role
in detecting intensive foraging areas (Benhamou &
Bovet 1989, Bartumeus et al. 2008). Considering a div-
ing predator that forages and feeds in the water col-
umn, the number of dives per kilometre can also be an
indicator of foraging intensity: the higher the number
of dives in a given distance, the more intense the for-
aging of the predator (Dragon et al. 2010). The pro-
portion of the dive spent at the bottom has also been
shown to be an indicator of foraging activity in several
diving predators, with animals spending more time at
the bottom in favourable foraging conditions (elephant
seal Mirounga leonina: Boyd & Arnbom 1991; sperm
whale Physeter macro ce pha lus: Miller et al. 2004;
grey seal Halichoerus grypus: Austin et al. 2006; Aus-
tralian sea lion Neo phoca cine rea: Fowler et al. 2006).

Furthermore, maximum diving depth can indicate the
animal’s energetic budget: the deeper the dives in the
water column, the more expensive the access to re-
sources and the less time the animal can spend at the
bottom (Le Boeuf 1994). Positive residuals from a mul-
tiple regression (bottom time as a function of maxi-
mum diving depth and dive duration) indicate longer
bottom time than expected for a given diving depth
and duration (Bailleul et al. 2007b). Therefore, higher
bottom time residuals (resBT) correspond to in creased
foraging time at the bottom of the dive (Bail leul et al.
2007b). Other specific descriptive track-based analy-
ses were recently published, such as fractal analysis,
where a segment of a given length is moved along the
animal track and the fractal dimension is calculated
for each segment (Dicke & Burrough 1988, Schmitt &
Seuront 2001, Tremblay et al. 2007). The ARS are
identified by high track convolutions corresponding
to an increased fractal dimension. Intensively used
 areas are identified by high values in the sinuosity
distribution displayed by one of the random walks.
 Finally, first passage time (FPT) provides a measure of
the time an animal takes to cross a virtual circle of a
radius r that is moved along its track (Fauchald &
Tveraa 2003). The underlying hypothesis is that high
FPT in certain areas corresponds to an ARS display.
Bailleul et al. (2008) adapted FPT to the resBT of div-
ing predators. Their method, the first bottom time
(FBT), identifies ARS along diving predators’ tracks.

These descriptive methods may accurately detect
the major ARS zones but lack a predictive capacity to
statistically categorize distinct foraging behaviours.
Recently, behavioural change point analysis has
allowed the detection of behavioural changes in
movement tracks with irregular measurement inter-
vals (Gurarie et al. 2009). Mechanistic models, such
as process-based models, allow a functional relation-
ship between the system’s probability of being in a
state at time t and the previous system states. In an
nth-order Markov chain, the process model proba-
bilistically predicts the future system state from its n
previous states (Cappé et al. 2005). Animal move-
ments can be modelled as correlated (and/or biased)
random walks (Turchin 1991) that generally corre-
spond to first-order Markov chains (Patterson et al.
2008). In particular, state-space models combine an
observation model to a process model (review in Pat-
terson et al. 2008 and Schick et al. 2008). The obser-
vation model describes mathematically how observa-
tions of the states (for instance potential locations
including measurement errors) are related to the real
states (e.g. true locations that are unobservable be -
cause of imperfect observation technology). Unlike
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state-space models where the unobservable state lies
on a continuum, Hidden Markov Models (HMMs) are
process-based models with a finite set of discrete
 categorical hidden states (Cappé et al. 2005). For
instance, the state at time t can depend on a hidden
variable such as the foraging mode of a free-ranging
predator (Morales et al. 2004). When analysing noisy
tracking data, an HMM that infers the animal’s
behavioural modes can be nested within a state-
space model for the estimation of the animal’s loca-
tions (Jonsen et al. 2005, Jonsen et al. 2007). For fil-
tered Argos locations or very low-error GPS data,
HMM assign behavioural modes directly from infer-
ences on movement data (Franke et al. 2004, Morales
et al. 2004, Vermard et al. 2010, Walker & Bez 2010).
The use of environmental covariates in the HMM
inference can help in understanding how predators
adapt their foraging behaviour to local environmen-
tal conditions (Morales et al. 2004). For instance,
numerous marine predators have shown preferences
for oceanographic features that could be quantified
in the HMM context (Bost et al. 2009). Furthermore,
the addition of behavioural covariates, such as resBT
for a diving predator, can potentially improve the for-
aging mode estimation. Ultimately, the choice of
method depends on the predators’ ecology (its dis-
tance, regularity and scale of movement), the resolu-
tion of the collected data and on the methods’ appro-
priateness. Foraging ecologists are confronted by this
choice while having little information on the meth-
ods’ abilities, for a given data resolution, to properly
detect successful foraging activity.

Wide-ranging predators are often impossible to ob -
serve across their range, which makes the estimation
of their foraging success more difficult. In the case of
diving predators, though, their body condition
depends on the animals’ buoyancy, which is deter-
mined by the relative proportions of lipids and lean
body tissue (Webb et al. 1998). Therefore, buoyancy
modifications along a diving predator’s track indicate
variations in body condition that are directly related
to its foraging success. In particular, a predator spe-
cies that drifts passively in the water column while
diving provides an ideal opportunity to infer in situ
body condition (Biuw et al. 2003). Travelling thou-
sands of kilometres per year in the circumpolar
waters of the Southern Ocean (McConnell et al.
1992), southern elephant seals Mirounga leonina are
elusive marine predators. They continuously dive
during their extended stay at sea and display behav-
iours named ‘drift dives’ along their tracks. Southern
elephant seals regularly perform dives during which
they stop swimming and drift passively in the water

column (Biuw et al. 2003). Vertical movements dur-
ing these dives are related to the seal’s body condi-
tion (Webb et al. 1998): fat and positively buoyant
seals will follow an upward drift. Inversely, lean seals
with a negatively buoyant body condition will sink
during a drift dive. An increase in the drift rate over
time indicates recent lipid anabolism and the occur-
rence of a previous successful foraging activity
(Bailleul et al. 2007b, Biuw et al. 2007). This drift rate
index provides a rare independent measure to evalu-
ate the foraging zones identified using the track-
based methods available to foraging ecologists.

Our aims in this study were 2-fold: we investigated
(1) the similarity of several track-based methods to an
independent index of foraging success and (2) as-
sessed the influence of data resolution to determine
the most adequate method for the identification of
successful foraging areas. Among the track-based
methods previously mentioned, fractal dimension is
still controversial (Turchin 1996, Benhamou 2004),
and behavioural change point analysis detects the
behavioural changes but cannot ascertain whether
there is a finite number of behavioural modes and
where they occur. We thus decided to focus our study
on the most commonly used methods for diving
predators. Therefore, we tested, on GPS data and
previously filtered Argos data, 4 traditional track de-
scriptors, FPT and FBT methods and finally various
HMM, with and without environmental covariates.
We investigated, for these different track-based
methods, the similarity of ARS identification between
the analyses of elephant seals’ GPS and filtered
Argos tracks. We then evaluated, for each data reso-
lution, the validity of ARS identification by the track-
based methods against an independent dive-based
measure of foraging success, accounting for an esti-
mated time lag of metabolisation. A better assessment
of the proper detection of successful foraging and of
the effect of data resolution on track-based methods
will provide guidelines for future foraging studies.

MATERIALS AND METHODS

Tracking data and diving behaviour

Deployment of devices and data processing

Post-breeding southern elephant seal females were
captured, in October 2008 (n = 2) and 2009 (n = 5) on
Kerguelen Island (49° 20’ S, 70° 20’ E). Animals were
anaesthetised using a 1:1 combination of Tileta mine
and Zolazepam (Zoletil 100) injected intravenously
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(McMahon et al. 2000). After cleaning the
hair with acetone, satellite relayed data
loggers (MK10 Fast-Loc, 105 × 60 × 20 mm,
240 g, with cross-sectional area 12 cm2,
Wildlife Computers) were glued on the
seals’ heads, using quick-setting epoxy
(Araldite AW 2101). The loggers collected
and transmitted both Argos and GPS loca-
tion data (see Tables S1 & S2 in Supple-
ment 1 at www. int-res. com/ articles/ suppl/
m452p253_ supp/ that present characteris-
tics of both resolutions). The time depth
re corders (TDR) device collected pressure
every 2 s. The time elapsed between 2
GPS locations was set to be a minimum of
20 min. Six of the 7 equipped fe males
were recovered at the beginning of the
moulting season (January 2009 and 2010),
and the high resolution diving data sets
were downloaded.

The Argos locations of the poorest qual-
ity (Classes B and Z) were discarded. The
speed between successive remaining
locations was computed, and locations
leading to values >3 m s−1 were discarded
(Gir ard et al. 2006, Dragon et al. 2010). To
filter out the Argos location error, tracks
were then smoothed and resampled at 6 h
intervals using an Epanechnikov filter
with a time window of 2 d (Gaspar et al.
2006). TDR data were processed with a
standard zero-offset correction to take
into account shifts in the pressure trans-
ducer calibration of the instrument over
the period of data collection. Only dives
deeper than 15 m and lasting more than
3 min were kept for ana lysis. For Argos
and GPS tracks, each tracking location
was then associated with the dive profile,
a subset of the TDR data.

Drift dive detection and assessment of
the seals’ body conditions

Drift dive identification was processed
from the complete time-depth (TDR) data
as follows. First, instantaneous vertical
speed was calculated from the time-
depth data. It was then smoothed out by
using a moving average (10 s window) in
order to compensate for abrupt changes
in depth reading due to the captor accu-
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Fig. 1. Drift-dive detection process: time series of (a) smoothed vertical
speed (m s−1) of southern elephant seals and (b) depth (m). The example
illu strates the detection of a set of negative drift dives on November 2,
2008, with passive swimming sections in blue and surface phases in
green. (c) Example of a negative drift dive (grey frame in b). The surface
time is in green and the bottom phase includes a long negative drift phase
(blue with a vertical speed between −0.6 and 0 m s−1). A linear regression
(dashed grey line) is calculated during the drift phase. The slope coeffi-
cient of the regression corresponds to the drift rate (here −0.77 m s−1) asso-

ciated with each drift phase

http://www.int-res.com/articles/suppl/m452p253_supp/
http://www.int-res.com/articles/suppl/m452p253_supp/
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racy (±1 m). Within dives, drift phases were isolated
using a custom-made function under R software (R
Development Core Team 2009). Drift phases were
detected as periods of time of more than 3 min during
which the vertical speed was bounded between −0.6
and 0.6 m s−1 and with a low variance (s2 < 0.005) 
(Fig. 1, for more details see the annotated R codes in
 Supplement 2 at www.int-res.com/  articles/ suppl/
m452 p253 _ supp/).

For each drift dive, a drift rate was determined as
the slope coefficient of a linear regression between
depths and time (see Bailleul et al. 2007a and our
Fig. 1). Daily drift rate was then calculated along the
3 mo tracks (see Fig. S1 in Supplement 1). Consider-
ing the global fattening-up trend of the seals along
their tracks, we differentiated the daily drift rate to
detect extreme changes in drift rate (90% quantile).
Along each individual track, a drift rate categorical
variable indicated the presence of successful forag-
ing, e.g. where the seals improved greatly in body
condition and buoyancy (Crocker et al. 1997, Biuw et
al. 2003, Bailleul et al. 2007b).

Track-based methods for the detection of foraging
areas

Empirical descriptors of tracking data

We worked on both data resolutions to detect
intensive foraging areas from simple track metrics.
Four empirical descriptors of seal tracks were cal -
culated: step length (the net distance moved be -
tween 2 location measurements), number of dives
(between 2 locations), bottom time residuals and
maximum diving depth. In the ARS context, we
expected to detect intensive foraging events when
the seals displayed small step length (Biuw et al.
2007), high number of dives per kilometre, small dive
depth and high bottom time residuals. Therefore, 4
categorical variables indicated the presence of inten-
sive foraging areas from the extreme values in step
length (<10% quantile), number of dives (>90%
quantile), bottom time residuals (>90% quantile) and
maximum diving depth (<10%  quantile).

First passage time and first bottom time

FPT refers to the period of time that an animal, sup-
posed to be following a random walk, takes to leave
a circle centred on its location at time t (Fauchald &
Tveraa 2003). High FPT indicates ARS behaviour dis-

played at the spatial scale S, the chosen radius of the
circle that corresponds to the maximum peak in FPT
relative variance (see Fauchald & Tveraa 2003). For
each individual, we used FPT and its derived method
(FBT) to analyse the Argos and GPS tracking data. As
identified in preliminary studies (not presented here;
see Bailleul et al. 2008 for methodological details), S
used for FPT and FBT analyses on Argos tracks was
49 ± 32 km (mean ± SD) and 57 ± 23 km, respectively.
S on GPS tracks was 36 ± 16 km (FPT) and 60 ± 47 km
(FBT). Along the paths, FPT and FBT categorical
variables indicating the presence of ARS were
defined by long FPT/FBT times (90% quantile) deter-
mined at S.

Hidden Markov Models

In this study, we used 4 HMMs developed by
Morales et al. (2004) with 2 hidden, or unobservable,
behavioural modes and an increased number of co -
variates. HMMs estimate the probability p[t,b.mode]
of each observation point, in our case a vector of 2
components that are step length and turning angle
calculated from tracking data at time t, to be in the 2
different behavioural modes b.mode ∈ {1,2} (Eq. 1).
At each time step, an individual can change from the
current behavioural mode to a different one with an
estimated probability q as a function of time and the
previous behavioural mode. For 2 possible behav-
ioural modes, the model estimates a 2 × 2 probability
matrix (for details see the annotated BUGS code in
Supplement 2). Model parameters are estimated, in
each behavioural mode, from specific distributions
(Weibull distribution for step length and wrapped
Cauchy for turning angles; for details see Morales et
al. 2004).

(1)

where q is the probability function that describes the
probability of being in an intensive foraging mode
[b.mode = 1] at time t depending on the previous
behavioural mode (b.modet − 1).

The first HMM (HMM.0) includes no covariate to
estimate the probability of being in a behavioural
mode i ∈ {1,2} at time t, given that the animal was in
mode j ∈ {1,2} at time t−1. The probability matrix is
fixed in time. However, the probabilities of switching
between behavioural modes can also depend on
environmental and/or diving covariates.

The second model (HMM.SLA) is defined by a
switching probability depending on the previous
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behavioural mode and a local environmental covari-
ate that is likely to increase switching probability
from ex tensive to intensive foraging mode. A logistic
link was used to transform the regression with a con-
tinuous en vironmental covariate to a [0,1] probability
response:

(2)

with regression coefficients a0 and a1 depending on
the previous behavioural mode (b.modet −1). The co -
variate (cov.data) is measured locally for each time
step t.

Considering the covariate choice, previous studies
have shown that mesoscale eddies, highly correlated
to sea level anomalies data (SLA), were profitable
foraging areas for southern elephant seals (Bailleul et
al. 2010, Dragon et al. 2010). Weekly satellite maps of
a third degree ground resolution of SLA were ob -
tained from the Aviso data base (www. aviso.
oceanobs. com), from which we extracted SLA values
associated with each Argos and GPS track point of
the individuals.

Similarly, the third HMM (HMM.resBT) depended
on the bottom time residuals (resBT) as a behavioural
covariate. resBT were calculated for each dive asso-
ciated with an Argos or GPS track point. High resBT
are assumed to increase the probability of switching
from an extensive to an intensive foraging mode
(Bailleul et al. 2008).

Finally, the fourth HMM model, HMM.SLA.resBT,
which includes  the 2 previous covariates, is intended
to evaluate the relative importance of diving behav-
iour and environmental interactions in the foraging
process:

(3)

with regression (reg) coefficients a0, a1, a2 and a3
de pending on the previous behavioural mode
b.modet –1. The covariates, SLA and resBT, are mea-
sured locally and calculated for each time step t,
respectively.

Considering the number of observations, Bayesian
methods become particularly useful in determining
the best behavioural mode estimations. All models

were fitted with freely available software winBUGS
(Bayesian Analysis Using Gibbs Sampler, Spiegel-
halter et al. 1999) called from R (R Development
Core Team 2009) with the package R2WinBUGS
(Sturtz et al. 2005). For all models, we used vague
priors (Gam ma and Uniform distributions; for details
see Supplement 2) as recommended to avoid the
inherent bias of Bayesian methods as much as possi-
ble (Dennis 1996). Three MCMC (Monte-Carlo
Markov Chain techniques) chains were run for each
model, with 20 000 iterations following a 5000 burn-
in (thin = 100). Autocorrelation and convergence to
stationary distributions were examined in sample
paths of various parameters (Gelman & Rubin 1992,
Brooks & Gelman 1998, Morales et al. 2004). The
deviance information criterion (DIC, Spiegelhalter et
al. 2002) was used to select between the HMM for-
mulations. For each individual, we used the 4 HMMs
to analyse the Argos and GPS tracking data. The
time series of intensive foraging probabilities (p[t,1])
were transformed into categorical time series: when
p[t;1] > 0.5, the seal was considered to be in
intensive foraging mode (1) at time t.

Output similarity between drift rate index 
of foraging and analyses of Argos and GPS tracks

Similarity of foraging identification on Argos and
GPS tracks

For each individual, method and data resolution,
the percentage of time allocated to intensive forag-
ing, relative to the track durations, was calculated
from the categorical time series (intensive vs.
extensive foraging). Identified intensive foraging
zones on Argos tracks were compared with the
one identified on respective individuals’ GPS
tracks. Similarity be tween the time series was
evaluated with 2 indexes: the Jaccard index (Jac-
card 1901) and an index de rived from the Leven-
shtein distance (Eq. 4) (Levenshtein 1966, Dale
1989, Papadimitriou 2009, Farina et al. 2011). This
distance, also known as edit distance, is a parame-
ter which is easy to compute which is used for
measuring the amount of differences be tween 2
categorical time series. The greater the Levenshtein
distance (LD), the greater the  difference be tween
the sequences and therefore the difference in the
segmentations between the 2 se quences. Con-
versely, the LD similarity index is high when iden-
tifications of intensive foraging zones be tween the
2 time series are similar. 
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(4)

where LD is calculated from d the number of dele-
tions, i the number of insertions and s the number of
substitutions required to transform the first categori-
cal time series, of length l, into the second where
LD.idx is the LD similarity index.

To evaluate the influence of data sampling fre-
quency given an equally fine spatial resolution data -
set, we progressively subsampled the GPS tracks. We
worked from full GPS resolution (36 locations d−1 on
average, e.g. 1 location every 40 min) to Argos tem-
poral sampling frequency (4 locations d−1), with inter-
mediate resolutions (18, 12, 9, 6 locations d−1 equally
separated in time). For the Jaccard and LD similarity
indexes, the similarity of allocated intensive foraging
was evaluated between Argos resolution and the
6 GPS subsampled datasets.

Comparison with drift rate index of foraging

For each track-based method, successful foraging
zones, identified from the drift rate index of foraging,
were compared to the identified intensive foraging
zones on respective individuals’ Argos and GPS
tracks. The similarity between track-based methods
out puts and the categorical time series of drift rate
index of foraging was calculated with the Jaccard
and LD similarity indexes. However, to take into ac -
count the necessary time to digest and metabolise the
ingested preys into seal fat, we introduced, in the
similarity calculations, a time lag ranging from 0 to
12 d (Thums et al. 2008). We assumed that maximum
similarity indexes indicated the time needed for lipid
anabolism in post-breeding southern elephant seal
females.

RESULTS

Distribution at sea, diving and drifting behaviour

All but one individual foraged exclusively within
the interfrontal zone in pelagic waters (Fig. 2). The
remaining one went to the Antarctic Plateau area.
During the course of this study, animals for which
tags were recovered (n = 6) had an average foraging
trip duration of 84.4 ± 10.5 d (mean ± SD) and cov-
ered an average distance of 4314 ± 979 km. They
dove on average 58.6 ± 6.5 times a day and displayed

3.1 ± 0.8 drift dives per day. The individual that went
to the Antarctic Plateau during its foraging trip per-
formed significantly more drift dives per day than the
others (4.5 ± 1.03 vs. 2.8 ± 0.4, t = −3.7, df = 105, p =
0.0001). For the drift rate, all animals presented a
positive mean rate of increase (0.11 m s−1 ± 0.04) over
their whole foraging trip, reflecting an increase in
buoyancy along their paths.

Convergence and deviance information criterion of
Hidden Markov Models

The 2 first HMMs, HMM.0 and HMM.SLA, reached
convergence within the burn-in phase of all indi -
viduals at both data resolutions. HMM.resBT and
HMM.SLA.resBT did not converge for all individu-
als (Table 1). DIC was compared for all models that
converged: the simplest model (no covariate) dis-
played the lowest DIC values (Table 1). For
HMM.SLA, slope coefficients (a1) were marginally
different between behavioural modes on Argos
tracking data (slope coefficient when intensive for-
aging mode at time t −1: 1.76 ± 0.91 and when
extensive foraging mode at t −1: 0.92 ± 0.57, t = 1.9,
df = 8.4, p-value = 0.09). However on GPS tracking
data, no significant difference of coefficient a1 was
obtained between behavioural modes (intensive at
t −1: 2.03 ± 1.61 and extensive at t −1: 1.42 ± 1.09, t =
0.76, df = 8.8, p-value = 0.46). However, a positive
intercept coefficient (a0) was obtained for all indi-
viduals and both data resolutions when in intensive
foraging mode at t −1 (Argos: 2.41 ± 0.98 ; GPS: 2.76
± 0.84). Therefore, the probability of staying in an
intensive foraging mode was increased with nega-
tive SLA. On the contrary, the intercept coefficient
was negative (Argos: −2.53 ± 1.05; GPS: −2.52 ±
1.18) when the animals were in an extensive forag-
ing mode at t −1.

Similarity of ARS identification along GPS,
 subsampled GPS and filtered Argos tracks for the

different track-based methods

For GPS data, track-based methods had similar
ranges of time spent on intensive foraging (27.5%
±13.7). For Argos data, track-based methods had also
similar ranges of time spent on intensive foraging
(17.1% ± 15.3), but it was marginally more variable
for Argos data resolution than for GPS (F = 3.3, nu -
mer ator df = 5, denominator df = 13, p-value = 0.07).
Globally, the estimations of time spent on intensive
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foraging were significantly different between the
analyses of Argos and GPS tracks (Wilcoxon paired
test: W = 88, p = 0.02).

Fig. 3 illustrates the similarity between the outputs
of track-based methods applied to Argos and on GPS
tracking data (results are shown for the LD similarity
index; the Jaccard index gave similar results). The 4
empirical descriptors, number of dives (Nb.Dive),
resBT, maximum diving depth (Max.Depth) and step
length (Step.Length)  presented the highest similari-
ties between Argos and GPS outputs. HMM.0 and

HMM.SLA also presented good similarities between
the locations of intensive foraging along Argos and
GPS tracks. Finally, FPT, FBT, HMM.resBT and
HMM.SLA.resBT showed the lowest similarities.

Regarding variations in sampling frequency, the
proportions of time allocated to intensive foraging re -
mained nearly constant (see Fig. S2 in Supplement 1
at www.int-res.com/ articles/ suppl/ m452 p253_ supp/)
and standard deviations of the average percentage of
time allocated to intensive foraging were very stable
(9.7% ± 6.4).
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Fig. 2. (a) Filtered Argos satellite tracking and (b) GPS satellite tracking of 6 southern elephant seal females breeding on the
Kerguelen Islands. Two different strategies are presented: females mainly foraged in the interfrontal zone (latitudes between 35
and 60 °S), but 1 individual foraged in the Antarctic zone (yellow track). One female was equipped in October 2008 (red track);
all other individuals in October 2009. Grey shading indicates depths <1000 m (the  Kerguelen Plateau and the Antarctic shelf).
The Kerguelen Islands are depicted in white over the plateau. Dotted lines symbolize fronts (Orsi et al. 1995) within the South-
ern Ocean: Southern SubTropical Front (SSTF), Sub-Antarctic Front (SAF), Polar Front (PF) and the Southern Antarctic Circum-

polar Current Front (SACCF). We refer to the interfrontal zone as the area between the SSTF and the PF

Ind.                         Argos                                                      GPS                          
                           HMM.0   HMM.SLA    HMM.resBT   HMM.SLA.resBT      HMM.0     HMM.SLA    HMM.resBT     HMM.SLA.resBT

08-86372            8892        14163            14192                14204               42585          85367               nc                    90165
09-78524            3466         5984              5982                  5985                43140          84944           114193               114815
09-78525            1904         3304                nc                    3296                42813          84513               nc                       nc
09-86372            2367         3979                nc                      nc                   54918         112422          156512               156967
09-86373            3008         5140                nc                      nc                   43498          86158           116561               117111
09-86374            3042         5268                nc                    3296                41735          83370           111759               111810

Table 1. Deviance information criterion (DIC) for all HMM models that could reach convergence within a 5000 burn-in. Ind.: 
southern elephant seal individual; nc: models that did not converge

a b

http://www.int-res.com/articles/suppl/m452p253_supp/
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Validity of ARS identification by the track-based
methods compared to the drift rate index of

 foraging

The LD similarity index and Jaccard index (results
not shown) calculated with time lags from 0 to 12 d
showed great variations between data resolutions.
Table 2 presents time lags obtained for the various
track-based methods. Argos data showed maximal
similarity for an average lag of 4 d (4.27 ± 0.79, SD
calculated across track-based methods) whereas sim-
ilarity with GPS data was maximised for higher lags
(6.15 ± 1.67). However, for the HMM with no covari-
ate, the lag estimations with Argos and GPS tracks
were very close: the time lag between the intensive
foraging mode and the occurrence of positive change
in drift rate was estimated at 4.33 ± 2.52 d (SD across
individuals) on Argos tracks and 4.67 ± 5.51 d on GPS
tracks. Estimations for FBT were also similar be -
tween Argos and GPS track analyses (Argos: 5.00 ±
1.05 and GPS: 5.42 ± 1.74). Consequently, for the rest
of the study, the minimal time lag of fat metabolisa-
tion was considered to be 4 d for post-breeding fe -
males. Fig. 4 illustrates the mean LD similarity index
(and SD across individuals) between each track-
based method and the drift rate index with a 4 d
time lag. Values for methods applied to Argos data

(Fig. 4a) were of the same order as those for
methods ap plied to GPS data (Fig. 4b, Argos:
33.29 ± 18.13%; GPS: 44.04 ± 27.51%, t = −1.03,
df = 15.5, p-value = 0.31). With Argos data, the
highest similarities to the drift rate index of
 foraging were obtained between HMM.0
(56.00%) and HMM.SLA (61.86%). The 2 other
HMMs presented high variations between
individuals and lower values of similarity index
than FBT and FPT (50.19 and 39.62%, respec-
tively). For GPS resolution, similarity to the
drift rate index of foraging was maximised with
HMM.0 and HMM.SLA (71.23 and 70.45%).
Other track-based methods such as HMM with
behavioural covariate (resBT), FPT and FBT
presented high similarities with the drift rate
index of foraging. Finally, the poorest similari-
ties were obtained with methods based on
empirical descriptors (Max.Depth: 15.42% with
Ar gos and 11.04% with GPS tracking data).
Fig. 5 il lustrates various track-based methods
including HMM.SLA, FPT, maximum diving
depth and drift rate index of foraging (given a
4 d time lag) on the GPS track of 1 individual.
The illustrated example de picts the range of
similarities presented in Fig. 4: HMM with the
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Fig. 3. Percentage of similarity, given by the Levenshtein
distance (LD) similarity index (1 − LD), between track-based
methods applied to Argos and GPS tracks of 6 southern ele-
phant seals. Error bars are SD. Empirical descriptors pre-
sented the highest similarities (over 50%) and 2 HMMs pre-
sented similarities close to 40%. Max.Depth: maximum
diving depth; resBT: bottom time residuals; Step.Length:
step length; Nb.Dive: number of dives; FPT: first passage 

time; FBT: first bottom time

Methods                                                      Argos               GPS

Descriptive
Number of dives km−1 (Nb.Dive)          3.33 ± 1.15      5.00 ± 4.36
Bottom time residuals (resBT)               3.67 ± 3.79      3.00 ± 3.46
Step length (Step.Length)                     3.33 ± 4.04      6.33 ± 1.15
Maximum diving depth (Max.Depth)  5.33 ± 3.51      6.67 ± 1.53
First passage time (FPT)                        4.07 ± 0.43      9.57 ± 0.97
First bottom time (FBT)                         5.00 ± 1.05      5.42 ± 1.74

Mean                                                       4.12 ± 0.86      5.99 ± 2.17

Process-based (Hidden Markov Models)
HMM.0                                                   4.33 ± 2.52      4.67 ± 5.51
(no covariate)

HMM.SLA                                              4.33 ± 4.04      6.67 ± 3.79
(environmental covariate)

HMM.resBT                                           6.00 ± 7.07      7.00 ± 5.29
(behavioural covariate)

HMM.SLA.resBT                                   4.33 ± 4.93      6.33 ± 4.62
(env. × behav. covariate)

Mean                                                       4.74 ± 0.83      6.37 ± 0.63

Total mean                                             4.27 ± 0.79      6.15 ± 1.67

Table 2. Metabolisation time lags (± SD) for southern elephant seals
estimated for all track-based methods (descriptives and process-

based ones) on Argos and GPS resolution datasets
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SLA covariate is the most similar, FPT and step
length detect the main foraging areas, and the other
empirical de scriptors do not succeed in the detection
of intensive areas compared to the ones highlighted
by the drift rate foraging index.

DISCUSSION AND PERSPECTIVES

This study investigates the most common track-
based methods used to identify intensive foraging
along predators’ tracks. Six double-tagged seals
were used for comparing the performances of meth-
ods on Argos versus GPS data. The methods’ outputs
were then related to an independent, and assumed
true, index of  foraging success determined from
changes in the animal’s buoyancy and hence body
condition. Our re sults showed that the detection of
ARS behaviour and intensive foraging effort can be
equally assessed from low (Argos) and high (GPS)
resolution tracking data. We also provided an estima-
tion of the metabolisation time lag needed by the
post-breeding seals to process their food and im -

prove their body conditions. Given this
time lag, intensive foraging effort has
been directly associated with successful
foraging behaviour leading to lipid
anabolism and an increase in buoyancy.
Finally, the HMM used here, with or
without an environmental covariate, ap -
peared as the best methodo logy among
the tested methods to identify locations
of actual successful foraging along the
predators’ tracks. These results have
direct implications in the evaluation of
predators’ actual foraging and feeding
ranges with respect to environmental
conditions and resource availability.

An evaluation of similarity between
track-based methods applied to Argos
and GPS data resolutions indicated that
the methods based on empirical
descriptors are the most similar. Meth-
ods based on empirical descriptors are
largely dependent on timestamps, not
locations, whereas FPT/FBT methods
are highly dependent on the spatial
scale choice (Barraquand & Benhamou
2008). Therefore, FPT/FBT methods
might rank badly in this similarity eval-
uation due to the differences in spatial
resolutions and scales between Argos
and GPS track analyses. Unlike results

of FPT and FBT, results of HMMs do not rely on spa-
tial-scale choice. Intermediate similarities between
Argos and GPS track analyses are therefore dis-
played by HMM methods, except for the HMM with
resBT as covariate. However, caution must also be
taken with process-based models since they are
likely to be sensitive to spatial scale and data resolu-
tion (Breed et al. 2011). No change across subsam-
pling frequency was observed in the proportion of
time spent in intensive foraging along the tracks (see
Fig. S2 in Supplement 1). GPS tracks include low
error in the observations and so do the subsampled
tracks from the GPS datasets. We can expect that
similar subsamplings on Argos data, including high
error observations, would lead to important changes
between the proportions of intensive foraging
observed along the subsampled tracks. However, the
proportions of time spent in intensive foraging
assigned by HMM.0 and HMM.SLA are globally
consistent between low and high resolution tracking
data. Consequently, both data resolutions can be
considered adequate to identify intensive foraging
effort from those process-based methods. However,
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Fig. 4. Mean Levenshtein distance (LD) similarity index (1 − LD) calculated
for all southern elephant seals (in %) between the drift rate foraging index
and the track-based methods on (a) Argos tracks and (b) GPS ones. A time
lag of 4 d was included between the outputs of track-based methods and
changes in drift rate foraging index. Error bars are SD. Abbreviations are as 

in Fig. 3
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the species biology has to be taken into account, and
there may be a difference between Argos and GPS
data for predator species that make smaller moves or
shorter trips (Breed et al. 2011).

The minimal metabolisation time lag was esti-
mated to be 4 d based on a comparison between the

output of track-based methods and the drift rate
index of successful foraging. This minimal lag is in
the range of values mentioned for post-breeding fe -
males in the literature and seems biologically coher-
ent for mammals (Rosen et al. 2007, Thums et al.
2008). Although empirical descriptors presented high
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similarities in their outputs between Argos and GPS
track analyses, very little similarity was obtained
between their outputs and the drift rate index of suc-
cessful foraging. In this case, consistency between
data resolution was not a good indicator of the
method’s validity in ARS detection. Conversely, FPT
and FBT presented high similarities between their
outputs and the drift rate index of foraging but very
low consistency between Argos and GPS analyses. In
a spatially and temporally heterogeneous environ-
ment, predators can forage on patches of various
sizes and densities. It is therefore expected that a for-
aging predator will display movement patterns at
multiple spatial and temporal scales (Fauchald 1999).
Firstly, the choice of one, and only one, spatial scale
can be biased for FPT methods (Barraquand & Ben-
hamou 2008). Secondly, this choice potentially avoids
the detection of ARS displayed at multiple scales
(Orians & Wittenberger 1991). In contrast, process-
based models avoid this spatial scale choice and can
thus detect multiple-scale intensively used areas
along the tracks. Finally, HMMs do not require the
rather strong assumption behind FPT methods of un -
biased isotropic movements during intensive forag-
ing (Fauchald & Tveraa 2003).

In conclusion, some HMMs (HMM.0 and HMM.
SLA) also combined a high level of consistency
between Argos and GPS analyses with close similar-
ities between their outputs and the drift rate index of
foraging. They appeared to be the most optimal
methods for the detection of successful foraging
areas for both resolutions of tracking data. The mod-
els, both with and without an environmental covari-
ate, insured an adequate segmentation with vague
priors and a prior check of the underlying ARS
hypothesis (that is, the bimodal distribution of move-
ment parameters). Furthermore, given that the
movement variables follow a Markov chain, the be -
havioural segments present a homogeneity that is
consistent with the auto-correlated behaviour of a
wild predator. In the present study, given the small
number of iterations and computing time, conver-
gence for the 2 models was quickly reached for all
individuals. In regard to the 2 other HMMs, the
bimodality of covariates (resBT and SLA) suggests
that they would converge provided that there is a
larger number of iterations in future analyses. DIC
values were also the smallest for the 2 converging
models compared to other HMMs, although the DIC
statistics for HMM.SLA is almost double that of the
simplest model. In the present study, the best metho -
do logical compromise to properly detect successful
intensive foraging areas seemed to be the use of the

least parametrised model: the HMM with no covari-
ate. On the other hand, the use of an environmental
covariate allowed a quantified estimation of the ef -
fect of SLA on the seals’ foraging behaviour (through
the coefficients a0 and a1): the probability of staying
in intensive foraging behaviour was in creased with
negative SLA that characterise the structures of cy -
clonic eddies where the seals mainly forage (Bakun
2006, Bailleul et al. 2010, Dragon et al. 2010). Finally,
HMM flexibility allows for the adaptation to biologi-
cal characteristics of predator species: the model
structure can be extended to 3 or more behavioural
modes (Cappé et al. 2005), depending on the biology
of the studied species, and relationships between
predator’s behaviour and their direct environment
can be taken into account by the addition of covari-
ates in the model (Eckert et al. 2008).

In the present study, the HMMs were applied to
fixed time steps data due to a resampling that has
potentially introduced a bias. However, the outputs
evaluation by an independent methodology, the drift
rate index, showed that this bias is negligible.
Further more, we assumed that the filtered Argos and
the GPS tracking data were low-error observations.
Given such observations, HMMs displayed a high
ability to identify foraging zones. It is likely though
that filtered Argos data still contain observation
errors. State-space models are characterised by an
observation model dealing with the noisy raw data
and a process model that can, as HMMs do, draw sta-
tistical inferences about foraging behaviours along
the predators’ tracks. Therefore, state-space model-
ling combines statistical robustness and predictive
ability (Patterson et al. 2008). In comparison with the
other tested methods, process-based models, applied
to nil-error observations or raw data, appear to be the
most optimal methodology in behavioural ecology.
Although elephant seals have a large scale of move-
ment, it can be assumed that this methodology can
also be used on other predators’ movements, with
smaller spatial scales. It is our intention to examine
this in future work. In the present study, differences
in the temporal scales of detected events represent
the main limitation: important changes in drift rate
can only be de tected over a few days, everything else
being equal (Biuw et al. 2003). Therefore, drift rate
data may not detect punctual successful foraging
zones. However, by focusing on the most detectable
changes in drift rates (90% quantile), we adopted a
conservative approach for the calculation of the
metabolisation lag. Consequently, we assumed that
the detection of drift rate changes provided valuable
information on successful foraging zones at medium
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temporal and spatial scales. Such medium scales
match the Argos resolution better than the fine GPS
one, which may explain the differences observed be -
tween the 2 resolutions for the lag estimations. Fur-
thermore, we focused the present study on the simi-
larity between intensive foraging effort and changes
in body condition. Further work could also take into
account ARS that do not result in successive fat
metabolisation and would therefore appear in track-
based methods’ outputs but not in the drift rate suc-
cessful foraging index considered here. In this case,
accelerometry data would allow the quantification of
foraging activity by, for instance, the study of flip
stroke intensity (Wilson et al. 2007). The use of
accelerometers would also enable the identification
of seals’ foraging success at finer temporal and spa-
tial scales (Viviant et al. 2010).

CONCLUSIONS

In highly migratory marine species, which are
impossible to directly observe across their range,
existing information on the location of foraging and
feeding behaviour is mainly inferred from surface
movement analysis. The primary approach used to
investigate movement has become telemetry-based
methods that represent a rapidly growing field of
research. Specific analysis methods have been devel-
oped for this purpose, taking into account spatial res-
olution of complex individual-based data (Jonsen et
al. 2007, Bailleul et al. 2008 among others). This
study showed that intensive foraging areas could be
equally well detected from low and high resolution
tracking datasets. HMM, a type of process-based
models, were also shown to be the most efficient
method to infer successful foraging behaviour from
satellite tracking data of both resolutions. The
favourable foraging zones identified by the models,
both with and without an environmental covariate,
were located where positive changes of the seals’
body conditions occurred, given a 4 d metabolisation
lag.

Tracking foraging activity with the GPS system
produces new and valuable information about the
fine-scale behaviour and the effort of predators in
time and space, with more accurate and unbiased
estimates than studies based on Argos telemetry.
However, in the case of home-range studies, reserve
design or large-scale environmental characterisa-
tion, Argos data resolution proved to be sufficient for
the identification of the main successful foraging
areas. Argos data resolution might therefore be pre-

ferred by foraging ecologists for this range of ques-
tions. On the other hand, GPS resolution data, espe-
cially when combined with TDR data on diving
behaviour, supports more precise investigations such
as studies on fine temporal and spatial changes in the
movement and diving patterns of predators in
response to local oceanographic structures. Our ap -
proach was developed on southern elephant seal
data, but the methods used and the results found in
the present study have implications for foraging de -
tection on telemetry data of other predator species
fulfilling the ARS hypothesis.
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