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Could you please phrase ‘‘home range’’ as a question?
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Statisticians frequently voice concern that their interactions with applied researchers start only after data have been

collected. The same can be said for our experience with home-range studies. Too often, conversations about home

range begin with questions concerning estimation methods, smoothing parameters, or the nature of autocorrelation.

More productive efforts start by asking good (and interesting) research questions; once these questions are defined,

it becomes possible to ask how various design and analysis strategies influence one’s ability to answer these

questions. With this process in mind, we address key sample-design and data-analysis issues related to the topic of

home range. The impact of choosing a particular home-range estimator (e.g., minimum convex polygon, kernel

density estimator, or local convex hull) will be question dependent, and for some problems other movement or use-

based metrics (e.g., mean step lengths or time spent in particular areas) may be worthy of consideration. Thus, we

argue the need for more question-driven and focused research and for clearly distinguishing the biological concept

of an animal’s home range from the statistical quantities one uses to investigate this concept. For comparative

studies, it is important to standardize sampling regimes and estimation methods as much as possible, and to pay

close attention to missing data issues. More attention should also be given to temporally changing space-use

patterns, with biologically meaningful time periods (e.g., life-history stages) used to define sampling periods. Last,

we argue the need for closer connections between theoretical and empirical researchers. Advances in ecological

theory, and its application to natural resources management, will require carefully designed research studies to test

theoretical predictions from more mechanistic modeling approaches.

Key words: home range, kernel density, local convex hull, minimum convex polygon, mixed model, space use, study

design, telemetry, territory, utilization distribution
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All resident mammals restrict their movements to fairly well-

defined areas instead of wandering randomly, and thus the

concept of a home range, as an area routinely used by an

animal to meet its daily needs, serves as a useful concept for

studying animal behavior (Burt 1943; Powell 2012). Home

ranges have been explored using a variety of methods,

including both empirical and theoretical studies (Börger et al.

2008). Theoretical inquiries frequently aim to discover causes

and consequences of home-range (or restricted space-use)

behavior. For example, one might ask ‘‘why or under what

conditions does home-range behavior evolve (i.e., when is it

adaptive to restrict movements to a well-defined area)?’’ This

type of question is arguably best addressed using mathematical

models of animal-movement and foraging behaviors, as well as

interactions among individuals of the same and different

species (Börger et al. 2008; Moorcroft 2012; Moorcroft and

Lewis 2006). We refer readers to Mitchell and Powell (2012)

and Spencer (2012) for illustrative examples. By contrast, we

were asked to contribute a review of statistical home-range

estimators to this Special Feature on home ranges.

Although several such reviews exist (e.g., Kernohan et al.

2001; Kie et al. 2010; Laver and Kelly 2008), new methods for

estimating home-ranges continue to be developed, and thus, an

inclusive review seemed like a worthy objective. A plethora of

simulation studies have been used to compare home-range

estimators (e.g., Getz and Wilmers 2004; Huck et al. 2008;

Seaman et al. 1999). Other papers have been devoted to the

lack of adequate reporting of estimation methods used in

home-range studies (Laver and Kelly 2008; Lawson and

Rodgers 1997). Although much of this literature serves a useful
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purpose, the advice given regarding sample size considerations,

autocorrelation, and estimation methods is often conflicting.

These inconsistencies have in turn led to confusion among

some biologists regarding appropriate sampling designs and

analytical methods in home-range research. We strongly

believe that there is no ‘‘best’’ method for estimating home

ranges (much to the chagrin of practicing ecologists, including

ourselves, who seem to have an innate desire to find an

estimator that universally outperforms all others in common

data scenarios); the ‘‘best’’ or most appropriate analytical

method will be question-dependent. We felt it necessary to

highlight this facet upfront. Further, we expected many of the

current disagreements and confusion in the home-range

literature could be resolved by a question-driven review of

home-range estimators and recognition that the spatiotemporal

structure of animal-movement data must be considered when

evaluating study designs and inferential approaches.

We have observed a tendency for researchers to approach

home-range studies from the bottom up, with much emphasis

and consternation related to choosing methods for data

collection and analysis that are ‘‘statistically valid,’’ before

finally asking ‘‘what can my data tell me about animal home

ranges?’’ For example, it is not uncommon for researchers to

justify sampling intervals (between observed locations) by the

need to avoid problems associated with autocorrelation. Thus,

rather than allowing research questions to drive sample-design

and analysis choices, statistical concerns may end up limiting

the types of data researchers collect and the questions they ask.

We felt it important to emphasize a top-down, question-driven

approach to research design. Yet, we also thought it might be

possible to offer some general principles to help to guide

researchers as they evaluate the potential implications of

various design and analysis choices.

Our primary objective in writing this paper is to encourage

ecologists interested in studying home ranges to use a top-

down approach to research design and analysis. We begin the

paper with a motivating example to demonstrate the impor-

tance of the top-down approach. Secondarily, we aim to

provide a review of statistical home-range estimators, including

several recently proposed alternatives to classical kernel

density estimators (KDEs) and minimum convex polygon

(MCP) estimators. Hence, in the 2nd section of the paper, we

review home-range metrics commonly used in empirical

research (e.g., home-range size, intensity of space use, etc.),

and discuss the relative performance of various (old and new)

statistical home-range estimators in this context. We extend

this discussion by considering the implications of estimator

choice for comparative studies. In the last section of the paper,

we offer guiding principles useful for evaluating sampling

design and analysis choices in home-range studies.

MOTIVATING EXAMPLE

Top-down approach to research design.—To illustrate a

top-down approach that begins with clearly defined research

questions, consider the following scenario (see also the

summary in Table 1 for further considerations during each

step of the process). A biologist hypothesizes that white-tailed

deer (Odocoileus virginianus) will use dense conifer stands

more frequently when snow depths exceed 40 cm, a threshold

determined based on energetic costs of deer moving in deep

snow (conifers retain much snow in their crowns, so deer

should be able to move more easily in these stands than in open

habitat). To test the hypothesis, the researcher recognizes the

need to observe deer movements during both severe and mild

winters, and thus, he commits to a long-term study. Ideally, he

would like to observe the same deer in both types of winters.

More realistically, he will need to follow many deer (in each

year) to make sure that any conclusions are robust to among-

animal variability in space-use patterns. In addition, he will

want to observe deer throughout the winter to determine if

changes in seasonal movement patterns occur close to the

identified snow-depth threshold.

The researcher next selects a few different metrics to

quantify space-use patterns during each of several winters:

amount of time spent in conifer stands; mean step lengths

(distance moved between locations) in various habitat patches

(conifer stands, deciduous habitat, and open habitat); the areal

extent of habitats visited by deer, estimated using a kernel

density estimate of home-range size; and the percent of the 3rd

metric composed of conifer cover. The 1st metric provides

arguably the most direct behavioral response measure to

correlate with snow depth. Its main advantages are its

simplicity and interpretability. The 4th metric is similar, but

it substitutes area for time when quantifying the importance of

coniferous habitat. The 2nd and 3rd metrics are aimed more at

mechanisms underlying the specific research hypothesis (deer

should alter their movements and possibly avoid more-open

habitat in deep snow). To help interpret the 2nd metric, the

researcher also plans to collect snow-depth measurements in

these different habitat types.

Having selected possible metrics to test the researcher’s

hypotheses, and armed with pilot data (or information from the

literature), the researcher could then conduct a formal power

analysis to determine how various sample-design choices

influence hypothesis tests that rely on these metrics. Of

particular importance are questions about the number of

animals to follow, the monitoring frequency, and the required

accuracy of spatial location data. Different sampling designs

could be evaluated by simulating movement of multiple

animals under varying snow-depth scenarios, with location

data ‘‘collected’’ at different sampling intervals. Hypothesis

tests could then be constructed using the 4 proposed metrics to

determine the likelihood of detecting a behavioral effect under

a range of possible simulated environments (and, assumptions

regarding how deer respond to those environments). In lieu of

conducting a simulation study, we explore sample-design

trade-offs as well as additional steps in the research process

using data from a previous telemetry project (Kochanny et al.

2009).

Sample-design trade-offs.—The optimal sampling design

will depend on one’s research hypotheses and the metrics
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chosen to test these hypotheses. For example, tests that rely on

movement paths or movement characteristics (e.g., mean step

lengths) will generally require more-frequent monitoring and

more-precise location data than tests that rely on estimates of

broadscale patterns of space use or size of areas used by

animals. Consider, for example, trade-offs between using very-

high-frequency (VHF) and global positioning system (GPS)

monitoring tools (Hebblewhite and Haydon 2010). These

trade-offs are illustrated nicely by a recent study of white-tailed

deer in Minnesota in which individual animals were observed

using both sampling techniques during the same time period

(Kochanny et al. 2009). For the animal depicted in Figs. 1a and

1b, VHF observations were made 2 or 3 times per week and

GPS locations were made every hour from 15 February to 12

May 1999.

In this example, estimates of broadscale space-use patterns

using VHF and GPS data were similar. For example, the 2

methods give identical point estimates (to 2 decimal places) of

time spent in the 2 patches defined by the 95% kernel density

contours from the VHF analysis (Fig. 1c): 57% of the time, the

animal was in the northeastern patch. The GPS data result in a

more precise estimate (the SEs are 0.11 and 0.03 for the VHF

and GPS data, respectively). Nonetheless, upfront costs for

GPS collars are significantly higher, which may reduce the

number of individuals that can be followed (relative to a VHF

study). Thus, estimates of population-level parameters may still

be more precise when using VHF data, particularly if among-

animal variability is substantial. The ability to obtain a

representative sample of locations also is important. Locations

can more easily be obtained throughout the day and night as

well as in inclement weather with GPS collars, but tests should

be conducted to determine the frequency of missed fixes.

Lastly, location error may be an important consideration. If

conifer stands are small relative to the likely error in VHF

location data, then VHF data may provide little power to detect

shifts in habitat use relative to snow depth (e.g., see

Montgomery et al. 2010). Again, pilot data (and more specifics

about the study area) would allow one to quantify trade-offs

between VHF and GPS techniques more precisely.

How robust are conclusions to the choice of metric?—Once

data have been collected and hypothesis tests have been

conducted, it is important to evaluate the robustness of one’s

TABLE 1.—Key steps and considerations required to successfully implement a question-driven approach to home-range studies.

1. Define precise research

questions

� Aim to test specific a priori hypotheses
� Hypotheses developed from exploratory studies and post hoc analyses need to be tested using independent data
� Aim to establish closer connections between theoretical and empirical studies (e.g., test predictions of theoretical

models)
� Research questions should drive sample design and analysis choices
� Other movement metrics may be more informative than home-range estimates for addressing certain research

questions

2. Identify spatiotemporal scales

and units of analysis

� Home ranges are dynamic, emergent patterns of animal space use, resulting from interactions between individuals

and the external environment
� Reporting a home-range measure without its associated temporal unit is akin to reporting travel speeds using only

distance travelled
� Research questions should determine appropriate temporal scale(s), allowing one to sample from well-defined and

biologically meaningful time periods
� Consider a finite population-sampling framework when evaluating the implications of sampling design choices

* The population is composed of locations visited by the study subject(s) and the sampling intensity determines

how well the population can be estimated
* Varying the sampling duration changes the population

3. Select space-use metrics and

covariates to test specific

research hypotheses

� The most appropriate metrics and methods for testing hypotheses will be context-specific, depending on the

underlying properties of the movement data and the question(s) asked
� Use multiple, complementary metrics (e.g., home-range size, intensity of space use, and movement characteristics)

when possible to determine if conclusions are sensitive to the choice of metric
� Location-only data have a very limited information content

* Identify environmental or biological covariates, or both, necessary to answer questions
* Attempt to collect data on the behavior or individual state, or both, associated with each location
* Direct observations may be more informative than large numbers of locations collected using automated

telemetry systems

4. Define sampling design and

inferential approach

� The optimal sampling design will depend on the research hypotheses and the metrics chosen to test them
� Use simulations to explore how various sample design choices influence hypothesis tests:

* Number of animals to follow;
* Monitoring frequency or intensity, or both, and impact of missing data;
* Required accuracy of spatial location data
* Trade-offs between sampling frequency and duration

� Often more can be learned by focusing on temporal dynamics, rather than conducting a static home-range analysis
� Simple models may perform better than complex ones, even when the latter are biologically more realistic

5. Assess the strength of

conclusions

� Determine if conclusions are robust to various analysis choices and if there are alternative explanations for

observed data patterns

6. Archive data � Archive raw location data, covariates, and metadata information, not estimates of home-range size, in databases

such as Movebank
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conclusions to various analysis choices and also to explore

alternative explanations for observed patterns in the data. In the

deer example (Fig. 1), estimated home-range areas differed

widely (GPS area ¼ 294 ha versus VHF area ¼ 945 ha).

Suppose VHF collars were used in the 1st year of the study and

GPS collars in 2nd, with the latter year being a more-severe

winter. In this case, the researcher might incorrectly conclude

that the data support his hypothesis (seasonal home ranges

decreased in the 2nd, more-severe winter year). However,

plotting the location data would show that this animal largely

used the same habitat; the noted difference in home-range areas

is due to a statistical artifact. Specifically, KDEs of home range

require specification of 1 or more smoothing parameters, which

have long been known to strongly influence estimates of home-

range size (Powell 2000). As discussed by Fieberg (2007a),

data-based methods for choosing these parameters involve a

bias–variance trade-off; larger parameters (i.e., greater

smoothing) are optimal in terms of minimizing the mean-

integrated squared error of the estimated probability density

when data are sparse or spatial variance is high. The example in

Fig. 1 is an extreme case in which the VHF data exhibited large

spatial variance with a small sample size; comparisons

involving 13 other sets of paired observations from the same

study suggested VHF- and GPS-based areas were, on average,

similar (Kochanny et al. 2009). A consequence was that home-

range sizes, estimated using outer 95% probability contours,

differed considerably even though the estimated probability

density functions largely agreed (Kochanny et al. 2009). This

example also serves to illustrate that not all metrics are equally

robust to various sample-design and analysis choices.

HOME-RANGE METRICS AND THEIR ESTIMATORS

Empirical home-range studies most frequently rely on

estimates of animal locations over time (although continuous

tracking via direct observation or by following animal tracks

also is possible [Powell and Mitchell 2012]). Questions

addressed by these studies tend to emphasize 1 or more of

the following characteristics:

1. Areas that are used (or not used) by an animal (without

regard to frequency of use).

2. The total area used by an animal (i.e., home-range size).

3. Variation in the amount of time spent in geographical space

(i.e., x and y coordinates). This variation is typically

quantified by a spatial probability density function called

the utilization distribution (UD—Van Winkle 1975).

Alternatively, one might quantify spatial variation in some

measure of utility (e.g., energy gained) with a utility

distribution (Powell 2012; Powell and Mitchell 2012).

4. Areas of concentrated space use within the home range, that

is, so-called ‘‘core areas.’’ Unfortunately, most studies

estimate core areas using ad hoc definitions (e.g., 50%

isopleths from the estimated UD). We refer readers to

Powell (2000, 2012), Seaman and Powell (1990), and

Wilson et al. (2010) for individual-based alternatives.

Researchers sometimes use the term ‘‘home range’’ to refer

to each of these general characteristics of animal space use. To

avoid confusion, however, it is useful to define questions (and

metrics) as precisely as possible, particularly because the

relative performance of statistical home-range estimators (and

of animal-movement metrics in general) will depend on which

(if any) of these characteristics are most appropriate for testing

one’s specific research hypotheses.

Traditional emphasis on areas that are used or not used.—

Many comparisons of statistical home-range estimators in the

literature emphasize the 1st characteristic (areas used or not

used). In particular, the 2 most commonly applied estimators of

home-range size, KDEs and MCP estimators (Laver and Kelly

2008), are often criticized because they do not include areas

known to be used by animals or they include areas known not

to be used (Getz et al. 2007; Getz and Wilmers 2004; White

and Garrott 1990), type I and type II errors, respectively.

FIG. 1.—Diurnal locations of an adult (�1.5 years old) female white-tailed deer collected by global positioning system (GPS) and very-high-

frequency (VHF) telemetry during 15 February–12 May 1999, Camp Ripley, Little Falls, Minnesota. The 3rd column depicts 95% probability

contours from kernel density estimators applied to the GPS (gray wide lines) and VHF (black thin lines) data.
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Probably less well known to most ecologists, however, is

that the general problem of estimating bounded areas from a

random sample of points is of interest to many fields of

research (e.g., cluster analysis and pattern recognition), and

falls under the theory of set estimation (Cuevas 2009;

Molchanov 2005). Because of their well-established statistical

properties, convex hulls (which form the basis of the MCP

approach) and KDEs are frequently proposed as estimators in

this general context. Specifically, KDEs with typical data-

based rules of bandwidth selection, in which smoothing goes to

0 as sample size goes to ‘, provide consistent (asymptotically

unbiased) estimates of the UD (Wand and Jones 1995). Similar

convergence properties apply to estimates of bounded areas

from KDEs (e.g., Cuevas and Fraiman 1997), despite claims

otherwise (Getz et al. 2007; Getz and Wilmers 2004)—for a

nice exemplification see Lichti and Swihart (2011). MCPs also

will converge as sample sizes increase provided the area one is

trying to estimate is convex (Molchanov 2005).

Almost always, however, home ranges do not take simple

geometric forms (Burt 1943), and MCPs typically result in type

II errors when the UD is not convex–a nice example is given

by figure 7.3 in White and Garrott (1990) in which a lake falls

partly within the convex polygon encompassing an animal’s

locations. Therefore, the suggestion by Harris et al. (1990) to

use MCPs for comparative purposes because they are

‘‘assumption-free’’ is misleading. Lastly, MCPs have been

shown to increase with sampling duration (Belant and

Follmann 2002; Moorcroft and Lewis 2006; Worton 1995a),

suggesting that they are likely to result in type I errors with

data sets of short sampling duration (Bekoff and Mech 1984).

By contrast, estimates of home-range size obtained from the

95% probability contour of a KDE often decrease with sample

size (Barg et al. 2005; Belant and Follmann 2002; Fieberg

2007a), and estimates may fragment into multiple, small

polygons with large data sets, leaving out travel corridors

between habitat patches. Thus, KDEs may result in type II

errors (due to oversmoothing) with small data sets and type I

errors (when restricted to a 95% contour) with large data sets.

Depending on how the estimates are ultimately used (i.e., the

motivating question), the cost of these errors may or may not

be large.

When the cost of type I and type II errors is large,

alternatives to MCPs and KDEs may be worth considering.

Generalizations of the convex hull that converge to a wider

class of shapes (not just convex sets) may prove useful for

home-range studies (e.g., Pateiro-López and Rodrı́guez-Casel

2010). Recently developed approaches using local convex

hulls have outperformed MCPs and KDEs in simulation studies

(in terms of type I and type II errors), particularly when

simulated space-use patterns had sharp boundaries (Getz et al.

2007; Getz and Wilmers 2004).

Importance of the home-range metric.—Although KDEs

have sometimes been criticized for relatively high type I or

type II error rates, KDEs may outperform local convex hull

approaches if the true UD varies smoothly over space,

especially if the underlying biological questions require a

continuous measure of space use rather than an estimate of

home-range size (Lichti and Swihart 2011); an example is the

extent to which 2 home ranges overlap (Fieberg and Kochanny

2005). These points were illustrated in a recent study by Lichti

and Swihart (2011), in which they compared KDEs (with

various bandwidth choices) to local convex hull approaches

using data simulated from a variety of UDs (Fig. 2). Although

local convex hull methods resulted in lower type II errors than

KDEs, differences were less pronounced when the UD varied

smoothly (compare UD1 and UD2 in each series of Fig. 2). On

the other hand, KDEs almost always resulted in more-accurate

estimates of the UD. The best method for estimating home-

range size depended on the true UD and the available sample

size. Together, these results reinforce the conclusion that the

most-appropriate method will be question-specific, that is, it

will depend on which home-range characteristic(s) (area used,

total area, or intensity of space use) is most appropriate for

testing one’s research hypothesis.

Use of auxiliary information to improve home-range
estimators.—Like KDEs, local convex hull methods also

require tuning parameters that influence their performance.

Getz and Wilmers (2004) and Getz et al. (2007) suggested

choosing the smallest tuning parameter that does not result in

holes (i.e., lacunae) corresponding to unused areas (e.g., lakes

for terrestrial species) to be included in the home range.

Incorporating useful auxiliary information will typically

improve the performance of estimators, and the relative

performance of local convex hulls (to KDEs) in these

simulation studies may be partly attributable to using this

extra information to choose tuning parameters (but see Lichti

and Swihart 2011). In fact, similar ideas have been proposed

for use with KDEs (e.g., choosing the smallest smoothing

parameters that result in a contiguous area [Berger and Gese

2007; Jacques et al. 2009]). Further, if there are areas known

not to be used, then any probability associated with these areas

can be reassigned to the rest of the home range (this is the

approach taken by the kernel-based ‘‘density.ppp’’ function in

the R package spatstats [Baddeley and Turner 2005]). One also

could reassign the probability locally, by redistributing the

probability mass of those kernels associated with locations near

unused areas—that is, kernels that would otherwise overlap the

unused areas (e.g., Benhamou and Cornelis 2010; Hines et al.

2005). Similarly, lacunae can be removed from MCP and other

home-range estimators (e.g., Knight et al. 2009; White and

Garrott 1990:153).

In addition to lacunae, impermeable boundaries to move-

ment can result in type II errors. Recently, Barry and McIntyre

(2011) proposed a lattice-based home-range estimator that can

account for a priori specified lacunae as well as boundaries that

impede movement (e.g., the shoreline for aquatic species).

Smoothing is accomplished by allowing probability mass

associated with the observed locations to flow according to a

constrained random walk among grid cells in the lattice, with

the amount of smoothing controlled by the number of steps in

the random walk. Similar to traditional KDEs, however, their

approach ignores the temporal nature of the observation
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process. Benhamou (2011) and Benhamou and Cornelis (2010)

also developed a movement-based kernel density estimation

approach that allows one to incorporate movement constraints.

Their approach is similar to the Brownian bridge model

proposed by Bullard (1999) and Horne et al. (2007a), in which

an underlying movement model is used to create a smooth

bridge between serially correlated observations. Conceptually,

this approach is appealing if boundaries to movement are

prominent and known a priori, and data exhibit a high degree

of serial correlation. Nonetheless, performance of the move-

ment-based kernel density estimators should be evaluated using

data simulated under expected study conditions to determine if

it improves upon other methods with respect to testing one’s

research hypotheses.

All of the above approaches assume unused areas can be

identified without error, which will be difficult except for

obvious cases, like fenced areas or water bodies (or terrestrial

areas for aquatic animals). Alternatively, model-supervised

kernel smoothing (Matthiopoulos 2003) provides a general

approach to incorporating auxiliary information (prior expec-

tations or data). Model-supervised kernel smoothing uses a

weighted combination of 2 estimators, a traditional KDE and a

model of space use built from the auxiliary information. The

relative weight of the 2 models is determined using likelihood

cross-validation. Simulations in Matthiopoulos (2003) suggest

that model-supervised kernel smoothing will improve upon

traditional KDEs when the auxiliary model is informative, and

perform similar to traditional KDEs when the auxiliary model

is not. Implementing model-supervised kernel smoothing and

modifications to KDEs require custom-written code, whereas

local convex hulls, the lattice-based estimator, and the

movement-based KDE may be implemented with publicly

available software (Barry and McIntyre 2011; Benhamou

2011; Benhamou and Cornelis 2010; Getz et al. 2007).

STATISTICAL INFERENCES

FROM COMPARATIVE STUDIES

Research hypotheses are frequently tested using comparative

studies, involving several individuals or populations of a

particular species or average species-specific estimates com-

pared across a range of species (e.g., Bordes et al. 2009;

Indermaur et al. 2009; Saı̈d et al. 2009). Relative comparisons

(among animals or among species) are used for inference, and

FIG. 2.—Utilization distributions (UDs) used by Lichti and Swihart (2011) to compare kernel density estimators (KDEs) and local convex hull

(LoCoH) approaches to estimating home-range sizes, UDs, and type II errors (probability mass associated with unused areas). UDs were arranged

into 3 series, with each series used to represent a different space-use pattern. Within each series, the intensity of the pattern increased from UD 1 to

UD 4. Reproduced from Lichti and Swihart (2011).
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thus a consistent bias (e.g., a tendency to consistently over- or

underestimate home-range size) will often be less of a concern

than obtaining estimates that are precise and robust to sampling

conditions (Börger et al. 2006a). Again, the importance of

home-range estimator and of sampling-related effects is likely

to depend on the underlying research question. Nilsen et al.

(2008) suggest that among-species comparisons are likely to be

robust to many sampling and analysis considerations because

the signal (differences among species) is likely to be large

relative to the noise (sampling variance and nonconstant

estimation biases). For example, choice of home-range

estimator (KDE or MCP) had little effect on estimated

regression lines relating species-specific estimates of body

size to estimates of home-range size. By contrast, choice of

estimator explained as much variance as did sex in the within-

species comparative examples considered by Nilsen et al.

(2008). Progressing from classical studies involving the

relationship between home-range size and body size will,

however, very likely require access to less-noisy home-range

estimates, ideally obtained from a joint analysis of the raw

movement data for all species compared.

Within-species comparative studies are often fraught with

additional challenges. Unlike among-species comparative

studies that are typically motivated by a precise theoretical

question or a priori hypothesis (e.g., the scaling of body size

and home-range size), within-species studies frequently aim to

examine a large suite of potential explanatory variables using

multivariable regression techniques (we refer readers to Platt

[1964], Romesburg [1981], and Williams [1997] for a

discussion of the import role of a priori hypotheses in scientific

research). Oftentimes, variables are chosen based on the

availability of large-scale geographical information system

databases, rather than from a mechanistic understanding (or

theory) of how these variables influence animal behavior.

Further, most telemetry studies follow a small number of

individuals, which has implications for learning from regres-

sion studies—this can be especially problematic for GPS-based

studies because of the high cost of GPS collars (Hebblewhite

and Haydon 2010). General sample-size guidelines suggest

limiting the number of predictor or candidate variables

(including nonlinear effects and interactions among variables)

to m/10 or m/20, where m is the effective sample size

(Burnham and Anderson 2002; Harrell 2001). The number of

animals will give a good approximation to the effective sample

size when predictor variables do not vary within an animal

(e.g., sex). Thus, typical telemetry studies involving 10–20

animals provide little information for sorting out the influence

of multiple animal-specific variables. On the other hand,

mixed-effects models applied to multiple estimates of home-

range size over time may provide a useful approach to looking

at variables that are temporally varying (e.g., environmental

covariates) because effective sample sizes will be larger for

variables that change within individuals (e.g., Börger et al.

2006a, 2006b; Pinheiro and Bates 2000). Regardless, we would

argue that more resources should be spent on studies designed

to test specific a priori hypotheses. In addition, hypotheses

generated by exploratory studies and post hoc analyses need to

be tested using independent data.

Of particular concern for drawing statistical inferences from

comparative studies is the previously noted relationship

between sample size and estimates of home-range size from

MCPs and KDEs (Worton 1995a). As will be discussed in the

next section, sample-size effects are best understood by

considering the separate effects of sampling duration and

sampling intensity, and if possible both should be standardized

in comparative studies (Börger et al. 2006b). Alternative

indexes of animal movement that are less sensitive to sample

size also may prove useful for comparative studies. For

example, Worton (1995a) proposed MCPs encompassing 50%

of the observed locations (i.e., peeled convex polygons) as a

useful metric related to home-range size. Using simulated data,

he found that estimators could be scaled (using factors that

depended on sample size) to allow comparisons across data

sets with varying numbers of locations; the same scale factors

worked well across a range of simulated UDs. Moorcroft and

Lewis (2006) also provide theoretical support for using peeled

MCPs as well as mean-absolute and mean-squared displace-

ment as indexes for animal movement. Ultimately, it is wise to

analyze data using multiple metrics and methods and thus, to

test whether conclusions are robust to various analysis choices.

In general, however, we advocate that researchers choose a

primary metric and analysis a priori, and then treat additional

analyses as a sensitivity analysis.

DESIGN AND ANALYSIS PRINCIPLES

We reiterate that optimal design and analysis strategies will

be question-dependent. We attempt, however, to provide some

general guidance on design issues, largely based on principles

from randomized experiments and finite population sampling.

Randomized experiments.—Randomized experiments

typically focus on a small number of important variables

(e.g., those defining treatments), with randomization and

blocking used to control for other systematic variation. In the

context of home-range studies, these principles suggest we

should try to test important theoretical predictions involving a

small number of key variables, sampling effort should be

allocated to maximize variation in these variables (e.g., to

understand how winter conditions affect space use, we need a

study that is long enough to capture both mild and severe

winters), and we should attempt to control for sampling

characteristics that influence home-range estimators but are not

of direct importance.

Finite population sampling (fixed sample size versus
sampling duration and intensity).—Several authors have put

forth guidelines regarding minimum sample sizes necessary for

estimating home ranges. These guidelines have typically been

derived from simulation studies that sampled from stationary

distributions (e.g., mixtures of multivariate normal

distributions [Seaman et al. 1999]), which do not capture the

temporal nature of animal location data. Ultimately, this way of

thinking led to a strong focus on autocorrelation and the need
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to gather independent data so that the observed number of

locations was a good measure of information content (effective

sample size). By contrast, viewing the problem from a survey

sampling viewpoint (with well-defined population and sample

units) alleviates many of the concerns related to

autocorrelation, by highlighting the importance of sampling

duration and sampling intensity rather than the total number of

locations (Fieberg 2007a; Otis and White 1999). In the context

of a telemetry study, the population is composed of locations

visited by an animal (or group of animals). Varying the

sampling duration changes the population. Longer sampling

durations may result in larger used areas, especially when

longer studies encompass a wider range of environmental

conditions. Similarly, animals may use different areas as they

age, grow, and enter new life-history stages (Burt 1943). Thus,

whenever possible, researchers should sample from well-

defined (e.g., specified start and end dates) or biologically

meaningful (e.g., encompassing specific life-history stages)

time periods.

Sampling intensity, by contrast, determines how well we can

characterize the population of visited locations. Larger samples

(for a fixed study duration) are always better, provided that

they are representative, and thus there is no need to subsample

data already collected as sometimes has been done to avoid

autocorrelation (Fieberg [2007a] and references therein). To

further see the utility of a finite population sampling

perspective, consider common guidelines for sample-size

requirements stated in terms of the total number of locations

(e.g., 50 observations per animal for estimating home-range

size, as suggested by Seaman et al. [1999]). Clearly, 50

observations collected over 1 week is not the same as 50

observations collected over a period of a year or more, and

researchers might suspect that autocorrelation in some way

invalidates the former data set. A finite population sampling

perspective provides a much clearer way to view these 2 data

sets: the former data provide a rich source of information for

inferring space-use patterns over a very short time period,

whereas the latter data likely provide less-precise estimates of

space use over a longer but maybe more biologically

meaningful time period. Continuous monitoring, by direct

observation of study animals or by following tracks in the

snow, also may be beneficial depending on one’s research

questions (Powell 2012; Powell and Mitchell 2012). In such

cases, the population becomes a known quantity, but whether

this quantity is interesting or not may depend on the sampling

duration.

Trade-offs involving sampling frequency versus sampling
duration.—Although having more data is nearly always better,

the rate of information gain is likely to asymptote as sampling

intensities increase to the point where little to no movement

occurs between observations (Turchin 1998). Trade-offs

involving information gains and costs, as well as trade-offs

involving sampling frequency and sampling duration (e.g.,

associated with battery life of GPS collars) deserve more

attention (Powell 2012). These trade-offs can be investigated

by simulating observed locations along continuous movement

paths, thereby introducing temporal correlation among

observations, rather than sampling locations from a stationary

probability distribution (Fieberg 2007a, 2007b). For many

problems, we expect variable sampling intensities to be of less

concern than variable study durations. For example, Kochanny

et al. (2009) found that KDEs for white-tailed deer using VHF

data with 1–3 observations per week were generally similar to

those based on hourly GPS samples. When KDEs were applied

to VHF data, larger smoothing parameters were chosen and the

additional smoothing largely fill in gaps between observations

that were otherwise filled in by more-frequent sampling in the

GPS data. Börger et al. (2006a) also found KDEs of home-

range size were relatively stable with sampling intensities of

�10 observations per month for roe deer (Capreolus
capreolus), particularly when compared to observed among-

animal variability.

Missing data, variable sample duration, and dynamic home-
range analysis.—Although a finite population sampling

framework largely alleviates concerns associated with

autocorrelation, this framework assumes one can define and

obtain a representative (or random) sample from a biologically

meaningful time period (Fieberg 2007a, 2007b; Otis and White

1999). Two potential concerns arise in typical telemetry

studies: obtaining a representative sample can be difficult

because of logistical constraints that limit or restrict one’s

ability to obtain locations (e.g., inclement weather may prevent

one from obtaining a location with VHF collars) and also

because of technological issues (e.g., missed fixes may occur in

dense cover with GPS collars); and the process of capturing,

collaring, and tracking animals often leads to considerable

among-animal variability in monitoring start and end dates. In

essence, these challenges can be thought of as creating missing

data (where a ‘‘full’’ data set would contain an equal number of

observations, taken from identical time frames, for all animals).

At a minimum, one should qualitatively assess the likely

impact of missing (or nonrepresentative) data on results

derived from a telemetry study. To do this, one needs to study

the pattern of missing data (e.g., timing within a day or

seasonally) along with diurnal and seasonal patterns in the

location data to determine how systematic biases might

influence metrics of interest. For example, if most missing

data occur during the middle of the day when animals are

assumed to be resting in heavy cover, then areas of dense cover

will be underrepresented; further, movement rates will likely be

overestimated in the middle of the day. In some cases,

stationary tests may help elucidate covariates (e.g., canopy

cover) that influence the probability of a successful fix (see

Frair et al. [2010] for a review). In these cases, a model for the

probability of detection can sometimes be used to fill in

missing locations or statistically correct for sampling biases

associated with missing data (Frair et al. 2004; Horne et al.

2007b; Nielson et al. 2009).

To understand the implications of variable sampling

durations, one needs to understand how animal space use

varies temporally. Börger et al. (2006b) demonstrated how

mixed-effects models applied to repeated home-range estimates
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across multiple temporal scales can provide insight into factors

that may be responsible for temporal variation in space-use

patterns. For example, they found that climatic variables

(precipitation and photoperiod) interacted with habitat charac-

teristics (dominant habitat type within the home range) and

were more pronounced over shorter timescales (biweekly–half-

year scales versus yearly scale). Recently, Rivrud et al. (2010)

used this approach to understand how climate affects animal

behavior, by investigating how local climate variables

explained estimates of home-range size over different temporal

scales. Temporal variation in patterns of space use also may be

studied using space–time KDEs, as recently suggested by

Keating and Cherry (2009). Specifically, they illustrate

smoothing approaches that utilize a circular timescale (0–24

h or 0–365 days) to facilitate modeling recurrent patterns of

space use in time, such as seasonal migrations. These

approaches to studying temporally changing space-use patterns

provide a more dynamic picture of animal behavior than static

home-range analyses, and they also may prove useful for

designing future studies (e.g., by providing an objective means

for deriving biologically meaningful sampling periods).

Assigning a temporal unit to home ranges and connections
to other types of animal space use.—Home ranges are

emergent, dynamic patterns of space use and memory,

determined by complex interactions between individuals and

their environment (Börger et al. 2008; Mitchell and Powell

2012; Moorcroft and Lewis 2006; Powell and Mitchell 2012;

Spencer 2012). Because environments (and individual state)

are constantly changing, we may expect space-use patterns to

change too (e.g., Edwards et al. 2009; Moorhouse and

Macdonald 2005; Spencer 2012). Thus, we argue that home-

range estimates should be ascribed a temporal unit (area for a

given unit of time [White and Garrott 1990]). Although it is

common to attach seasonal labels (e.g., summer and winter) to

home-range estimates, variable sampling durations within these

seasonal categories can have implications for home-range

estimates (the longer an animal is followed, the more space it

will likely use, which can translate into larger home-range

estimates). Thus, we stress that reporting a home-range

measure without its associated temporal unit is akin to

reporting total distance traveled without a temporal frame of

reference.

Considering the temporal scale of home-range estimates also

allows for broader comparisons of space-use patterns than

normally afforded by traditional static notions of home range.

For example, home ranges can shift or slowly drift over time

(Doncaster and Macdonald 1991; Edwards et al. 2009; Spencer

2012) and animals may alternate between different space-use

behaviors (e.g., dispersal, migration, or nomadism). Current

research increasingly highlights the need to better understand

these dynamics by considering specific space-use patterns in

the wider context of animal-movement models (e.g. Börger et

al. 2011). Spatiotemporal UD estimators (e.g., the KDE

proposed by Keating and Cherry [2009]) may have utility for

studying these space-use patterns, particularly when combined

with fine-scale temporal data (e.g., as provided by GPS

technology or direct observation).

Inherent limitation of location-only data.—The widespread

availability of GPS technology has led to the collection of vast

amounts of location data, and these data have in turn fueled the

development of new quantitative methods for modeling animal

movement, resource selection, and home range (Fieberg et al.

2010; Kie et al. 2010; Patterson et al. 2008). In an attempt to

understand why animals visit specific locations, latent

(unobserved) variables representing an animal’s behavioral

state at the time of observation can be included in these models

(e.g., Morales et al. 2004). Inferring processes (e.g., movement

dynamics) from patterns in location data is difficult, however,

because multiple, contrasting models can often fit the data

equally well (e.g., see discussion in Börger et al. [2011]). To

understand why an animal uses a certain location or area will

almost certainly require direct observation of animal behavior

(Powell 2012). When behavioral data are available, separate

UDs can be estimated (for each behavior) to investigate if

individuals use different areas of the home range for different

behaviors and if so, why (e.g., Marzluff et al. 2001).

Unfortunately, such studies are very rare and we highlight

this as a crucial avenue for future research.

Simplicity (independent observations) versus complexity
(modeling correlation due to animal movement).—

Historically, ecologists almost always treated location data as

being independent, leading to relatively simple estimators of

home range. Although location data are usually autocorrelated,

the assumption of independence can be justified when

inferences are limited to the fixed sampling period and

observation times are random (or, alternatively, locations are

evenly distributed over the sampling period [Breunig 2001;

Buskirk 1998; Fieberg 2007a]). In addition, various weighting

schemes can be derived either to reduce bias when

oversampling certain time periods (Fieberg 2007b) or to

improve efficiency when sampling intensity varies temporally

(Hines et al. 2005; Katajisto and Moilanen 2006).

Alternatively, density estimators have been developed that

explicitly acknowledge the temporal nature of animal location

data. These approaches usually incorporate models of animal

movement into the estimation approach. The earliest applica-

tions assumed animal movement could be modeled as a

diffusion process with an attraction to an activity center,

formally a bivariate Ornstein–Uhlenbeck process, which in the

long-run results in a multivariate normal UD (Dunn and

Brisbin 1985; Dunn and Gipson 1977; Worton 1995b).

Brownian bridge estimators offer a similar approach to

home-range estimation, by assuming animals move according

to a random walk (similar to a diffusion process) between

observed locations (Bullard 1999; Horne et al. 2007a).

Estimators that model movement between locations, thereby

accounting for temporal correlation in the data, are appealing—

for example, Horne et al. (2007a) provide a nice example of

using a Brownian bridge estimator to explore travel routes and

highway crossings of black bears (Ursus americanus) in Idaho.

Nonetheless, these methods require the estimation of move-
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ment parameters (e.g., travel speed) that are not present in

traditional estimators built under an independence assumption.

Further, models of animal movement (e.g., random diffusion or

constant travel speed) may be too simplistic to provide a good

fit to location data. As a result, these methods may not be as

accurate or precise as estimators that ignore the temporal nature

of the animal locations. Accordingly, Fieberg (2007a) found

that an estimator based on the multivariate normal distribution

assuming independent observations performed as well as the

bivariate Ornstein–Uhlenbeck estimator even when data were

autocorrelated and simulated according to the bivariate

Ornstein–Uhlenbeck model. Similarly, Powell (2012) found,

using simulated data, that a Brownian bridge estimator was less

accurate than traditional KDEs when data were sparse, and

performed only slightly better than tradition KDEs when data

were sampled more intensively (resulting in highly autocorre-

lated data). The Brownian bridge estimator also performed

poorly in a recent study comparing MCPs, KDEs, Brownian

bridges, and local convex hulls for estimating badger (Meles
meles) home-range size (Huck et al. 2008). Yet, methods that

allow for more realistic movement patterns between sequential

locations offer an interesting and potentially promising avenue

for future research (see Benhamou [2011] and Benhamou and

Cornelis [2010] for recent examples).

Similar findings with respect to model complexity have been

made in natural resource management and population model-

ing, that is, simple models may perform better than complex

ones, even when the latter are biologically more realistic

(Adkison [2009] and references therein). For home-range

studies, we suggest that trade-offs associated with model

complexity offer an interesting line of research, but anticipate

that conclusions regarding the most appropriate methods will

be context-specific, depending on the underlying properties of

the movement data and the question(s) asked (Powell and

Mitchell 2012). We expect movement-based methods to be

most useful when data are collected with a high sampling

frequency, when animal movement can be adequately

described by relatively simple models, and when an under-

standing of temporal dynamics is necessary for answering

research questions of interest.

Establishing connections between theoretical and empirical
research.—Much progress in understanding animal home

ranges could be obtained by establishing closer connections

between theoretical and empirical studies. For instance, it

would be particularly interesting to design an empirical study

to test some of the theoretical predictions made by Spencer

(2012). Spencer’s models predict that animals should forage in

relatively concentrated areas, but these areas should randomly

drift or shift over time when the value of information (gained

from previous visits to a site) is high but the environment

changes rapidly (see also Van Moorter et al. 2009). On the

other hand, highly predictable resource distributions should

lead animals to maximize time between revisits to sites,

allowing resources to renew nearly fully (Davies and Houston

1981). One could test these predictions by experimentally

manipulating resource distributions (to represent varying

magnitudes of predictability along with varying rates of

resource renewal). Spatiotemporal UD estimates or path

recursion analyses (e.g., Bar-David et al. 2009) could then be

used to look for a shift in space-use patterns in response to

these manipulations (e.g., from drifting patterns to systematic

exploration and revisiting areas within the home range).

Importantly, this topic serves to illustrate the importance of

and potential for cross-fertilization between theoretical and

empirical research (Börger et al. 2008).

Implications of question-specific approaches to home-range
analysis.—We have argued that the best approach to analyzing

location data will depend on the research question posed. For

example, one may prefer KDEs for addressing questions that

rely on estimated UDs, whereas using local convex hulls to

explore the importance of habitat-edge features on the use of

space (Getz et al. 2007; Lichti and Swihart 2011). The

assertion that methods should be question-dependent has

several other implications for home-range research. First, we

may expect researchers to apply a variety of methods for

analyzing location data. For comparative studies, however, it is

important to standardize sampling and analytical approaches as

much as possible (Börger et al. 2006b; Nilsen et al. 2008).

Thus, to aid future comparative studies, it will be important to

archive raw location data in databases such as Movebank

(http://www.movebank.org/about/index.html), rather than

archive estimates of home-range size (Börger et al. 2006a).

Similarly, all relevant metadata and the associated

environmental data should be archived. Recently developed

software platforms for managing location data may prove

useful for this task (e.g., Cagnacci and Urbano 2008). At the

same time, we caution against uncritical, automated analyses of

data in these systems.

We expect continual development of new approaches to

analyzing location data (e.g., Getz et al. 2007; Horne et al.

2007a); one reviewer suggested that the recent availability of

high-resolution digital imaging and high-resolution digital

elevation maps provide exciting opportunities for exploring

home ranges in 3 dimensions (see also Keating and Cherry

2009). Ultimately, new methods should be evaluated in terms

of their ability to provide useful answers to specific research

questions. Last, we predict that searches for the holy grail of

home-range estimators, one that will provide a ‘‘one size fits

all’’ approach to data analysis, will continue to fail.
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