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Abstract Given the lack of background data on essential
and non-essential trace elements in invertebrates and fish
known to be the predominant prey of marine mammals and
seabirds breeding at the Kerguelen Islands, this study
intends to provide these results of great influence for
predators in higher trophic levels. To this end, plankton
organisms (9 species/4 phyla), mollusks (2 bivalves and 2
squid species) and fishes (8 benthic and 10 pelagic species)
from Kerguelen waters were analysed for cadmium (Cd),
copper (Cu), mercury (Hg) and zinc (Zn). Individual con-
centrations of non-essential elements (particularly Cd)
showed larger variation in comparison with essential ones
likely due to their homeostasis. Thus Cd ranged over 4
orders of magnitude; however, Hg ranged only 1, without
significant correlation to trophic level. Instead, ecological
parameters (benthic/mesopelagic habitat and feeding
ecology) showed a more important influence on the results.
Concerning seashore organisms, bivalves collected inside
the Gulf of Morbihan had higher Cd concentrations com-
pared to those from the Kerguelen shelf, suggesting a local
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source of Cd, such as runoff water from bird colonies.
Comparison with the literature showed metal concentra-
tions in invertebrates and fishes from Kerguelen Islands
somewhat lower than those in the Antarctic area, with Hg
prevailing in benthic species and Cd in pelagic ones. In
contrast to Hg, Cd values of squids, jellyfish and the
amphipod Themisto gaudichaudii were significantly higher
than all other species. Finally, top predators foraging in this
area that can be subject to potentially high Hg and Cd
exposure through their diet at Kerguelen are reviewed.

Keywords Plankton - Myctophid - Food web - Metals -
Trace elements - Kerguelen

Introduction

The Southern Ocean constitutes a particular environment
for marine biota where human inputs of metals are sup-
posed to be very low. Several essential elements such as
iron (Fe) or copper (Cu) are poorly concentrated and/or
bioavailable in these waters and could therefore act as
limiting factors for phytoplankton (e.g. Coale 1991). In
higher trophic level organisms, low Cu and zinc (Zn)
concentrations in regard to organisms from temperate
regions have been found in crustaceans and mollusks (e.g.
Rainbow 1989; Petri and Zauke 1993; Bustamante et al.
1998a, 2003), raising the question of how these organisms
can cope with essential element-supposed deficiency.
Several hypotheses have been suggested to answer this
question such as a relatively higher efficiency of mecha-
nisms of element uptake compared to similar organisms
from non-deficient areas and/or the replacement of essen-
tial elements by non-essential ones in biochemical reac-
tions or in enzymes. To date, such replacement has only
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been evidenced for Zn substitution by Cd in carbonic
anhydrase from marine diatoms (Lane and Morel 2000;
Lane et al. 2005; Xu et al. 2008). In this context, the
interactions between essential and non-essential elements
in invertebrates and fish from the Southern Ocean appear
poorly documented and, moreover, baseline values neces-
sary for the study of such interactions are even scarcer, if
not inexistent in the literature.

Despite the comparatively low inputs of non-essential
elements, very high concentrations of Cd and Hg have been
reported in several organisms from distinct trophic levels in
Antarctic and subantarctic environments (Sanchez-Her-
nandez 2000; Bustamante et al. 2003; Dos Santos et al.
2006; Bargagli 2008). Population growth and industrial
development in several countries of the Southern Hemi-
sphere are changing the global pattern of persistent
anthropogenic contaminants and new classes of chemicals
have already been detected in the Southern Ocean (e.g.
Bargagli 2008; von Waldow et al. 2010; Carravieri et al.
2014a). Very high concentrations of both Cd and Hg were
also found in the tissues of top predators such as seabirds
and marine mammals from the Southern Ocean (see the
review of Sanchez-Hernandez 2000). These high trophic
level vertebrates are mainly exposed to trace elements
through their food (Muirhead and Furness 1988; Aguilar
et al. 1999) and some specific prey highly contribute to the
exposure to a given element. For example, cephalopod
consumption is well known to provide elevated concen-
trations of Cd under a bioavailable form (Bustamante et al.
1998b, 2002) and mesopelagic fish contain high amounts of
methyl-Hg (e.g. Monteiro et al. 1996; Chouvelon et al.
2012). However, there are only a few data on invertebrates
and fish to provide background for explaining the high Cd
and Hg concentrations in the top predators from the
Southern Ocean. Therefore, it is of major concern to pro-
vide data about lower trophic level organisms they feed on
to give a more comprehensive and evidence supported
basis to their contamination pattern. In addition to that, age,
trophic position, sex, size among other ecological param-
eters likely play a role in trace element concentrations in
these prey organisms (e.g. Locarnini and Presley 1995;
Dehn et al. 2006; Mclntyre and Beauchamp 2007).

Situated near the Polar Front, the Kerguelen Islands are
a particularly important area for breeding seabirds and for
mammals (see Guinet et al. 1996). Specifically, this
archipelago hosts a large and highly diverse avian assem-
blage (35 different breeding species according to
Weimerskirch et al. 1989) and 13 species of marine
mammals (3 mysticetes, 7 odontocetes and 3 pinnipeds;
Borsa 1997). According to their reproduction strategies,
many seabird species catch their prey in the highly pro-
ductive waters around the Archipelago and feed on a few
key species of marine organisms, including some
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crustaceans (e.g. euphausiids, hyperiids, copepods), fish
(e.g. myctophids, notothenioids) and cephalopods (e.g.
oceanic squids) (Guinet et al. 1996; Bocher et al. 2001;
Cherel and Hobson 2005; Cherel et al. 2010). Their
exposure to contaminants and that of their offspring is
therefore determined by the concentrations in these lower
trophic level organisms consumed specifically in this area,
at least during the breeding period.

In this context, the present study was conducted to
document selected trace element concentrations in zoo-
plankton, mollusks and fishes around the Kerguelen Islands
to provide understanding on the degree of metal contami-
nation in low trophic level organisms being the prey of
seabirds and marine mammals. To this end, Cd, Cu, Hg and
Zn have been analysed in organisms belonging to different
phyla of pelagic invertebrates and in 17 coastal and oceanic
fish species to cover the main categories of prey species of
the Kerguelen seabird community and of the marine
mammals foraging in these waters. The non-essential ele-
ments Cd and Hg constitute the main metals of concern for
wild vertebrates because of their known toxicity
(Scheuhammer 1987; Tan et al. 2009; Tartu et al. 2013). In
turn, Cu and Zn can be disturbed by the interaction of Cd
and Hg on their regulation proteins such as the metalloth-
ioneins (e.g. @verjordet et al. 2015). The levels of these
trace elements were compared within the benthic and
pelagic food webs and were globally compared with sim-
ilar organisms from other marine ecosystems, when
available. Finally, the significance of key species in con-
taminants transfer towards top predators was examined.

Materials and methods
Sampling of organisms

Pelagic and benthic organisms were successively collected
in the waters surrounding the Kerguelen Island Archipe-
lago (Fig. 1) during the austral summers from 1997 to
1999. Information on these organisms are summarised in
Table 1. In coastal waters, pelagic zooplankton mainly
constituted by hyperiid amphipods (Themisto gau-
dichaudii) and copepods (Paraeuchaeta antarctica) was
sampled inside the Morbihan Gulf in March 1997 with an
ORI-net (2 m?, 1-mm mesh aperture). In this area, several
benthic fish species (mostly Notothenidae) were also col-
lected by net fishing overnight (Table 1). Outside the gulf,
hyperiid amphipods (7. gaudichaudii), euphausiids
(Euphausia vallentini, E. frigida and E. triacantha) and six
myctophid species were collected in the eastern part of the
peri-insular shelf in February 1998, using a International
Young Gadoid Pelagic Trawl (IYGPT trawl; opening:
12 x 7 m) with 10-mm mesh size in the cod-end. Other
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Fig. 1 Kerguelen location in the Southern Indian Ocean among the
French Southern Lands (/eft) and detailed map (right). STZ, SAZ and
AZ stand for, respectively, the subtropical, sub-Antarctic and

pelagic materials (gelatinous plankton, planktonic crus-
taceans, squid and fish) were sampled during February
1999 on cruises of the RV “La Curieuse”. Benthic fish
were collected by bottom trawl used for commercial fishery
in the Southern Kerguelen shelf. The samples of the
copepod Thysanoessa sp. were obtained from stomach
contents of the South Georgian diving petrel collected
during investigations on the diet of this species (Bocher
et al. 2003) and potential effects of partial digestion must
be taken into account. Mussels were collected by hand on
the shore during low tides in January 1999. Immediately
after collection, the organisms were separated by species,
then sex and size or age classes whenever possible (E.
vallentini above and below 25 mm, and Champsocephalus
gunnari adults and juveniles, respectively), and frozen in
plastic bags or vials. Then, samples were stored at —20 °C
until analysis. All organisms were analysed whole, except
the mussels, which had their shells removed.

Sample preparation and analysis

Length (mm) and mass (g) of fish and squids were thor-
oughly determined, as well as the sex, whenever possible
(i.e. when size and maturity allowed so), and their gut
content was removed. In the case of myctophids, otoliths
were taken out to ensure identification of the species. Fish
and squids were systematically treated individually, except
Harpagifer sp. (12 individuals resulted in 4 samples). In
contrast, all other invertebrates were pooled, except the
jellyfish, which were treated individually. Pooling was
primarily made because of analytical reasons, in order to
gather enough mass to attend protocol specifications.
Sample characteristics, i.e. family, species, length, weight
and sex (for squid, fish and some crustacean species), are
given in Table 1. Trophic level is assessed based on the

Antarctic zones, whereas STF and PF stand for the subtropical and
polar fronts. Taken from Cipro et al. (2014)

personal data of the co-authors, mostly based on stomach
contents. Six of the seventeen fish species had also their
trophic levels determined by stable isotope ratio of nitrogen
published in other studies (Cherel et al. 2010). Since the
difference between these two methods was lower than one
trophic level, only the former will be further considered
during data interpretation.

Samples were dried for two to three days at 50 °C to a
constant weight and then homogenised. Next, two aliquots
of approx. 100-300 mg each (according to availability) of
homogenised dry sample were digested with 5 ml of 65%
HNO; and 0.3 ml of 70% HCIO, during 72 h at 80 °C.
When the solution was clear, acids were evaporated and the
obtained residues were dissolved in 10 ml 0.3 N nitric
acid. Cd, Cu and Zn were analysed using a flame and
graphite furnace atomic absorption spectrophotometer
Varian 250 Plus with deuterium background correction.
For Hg, aliquots ranging from 5 to 20 mg of dried material
were analysed directly in an Advanced Mercury Analyser
spectrophotometer (Altec AMA 254). Hg determination
involved evaporation of Hg by progressive heating until
700 °C was reached and then held under oxygen atmo-
sphere for 3 min, followed by an amalgamation on a gold-
net. Afterwards, the net was heated to liberate the collected
mercury, and subsequently measured by UV atomic
absorption spectrophotometry.

Quality assurance was assessed using dogfish liver
DOLT-2 (NRCC) and dogfish muscle DORM-2 (NRCC) as
reference materials. Such standards were analysed and
treated under the same conditions as the samples, with
errors in regard to the certified values remaining below 5%
in both cases. Detection limits were 0.004 for Cd, 0.5 for
Cu, 0.005 for Hg, and 3 pg g~ dry weight (dw) for Zn. All
trace element concentrations in Kerguelen Islands marine
organisms are reported in pgg ™~ 'dw unless stated otherwise.
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Table 1 Sample characteristics together with water content in the whole organisms (for dry/wet wt metal concentrations conversion)

Class or family Sample  Length  Fresh weight Sex Water Collection zone Functional
Species size (N) (mm) *: g or *: mg) content (%) group
Taxa
Cnidarians
Jellyfish 3 - 7-50* - 91 +£3 Shelf waters Filter-feeder
Ctenophora
Beroe sp. 15% - 1.6-2.3% - 92 +1 Shelf waters Filter-feeder
Crustaceans
Euphausiacea
Euphausia frigida 90° 14-18 11-29% - 80 £ 2 Eastern Shelf waters Herbivore
E. triacantha 15* 27-36 137-410* - 70 £ 3 Eastern Shelf waters Herbivore
E. vallentini (small) 32 16-24 19-88* - 61 +3 Eastern Shelf waters Herbivore
E. vallentini (large) 60? 25-30 24-96* - 73+ 3 Eastern Shelf waters Herbivore
Thysanoessa sp. 60" 5-20 1-53%* - 76 £ 5 Stomach content Omnivore
Copepoda
Paraeuchaeta 60* 5-10 6-18* Q 64 + 2 Coastal waters (Morbihan) Carnivore 1
antarctica
Paraeuchaeta 125% 3-5 4-8 3 69 + 1 Coastal waters (Morbihan) Carnivore 1
antarctica
Amphipoda
Themisto gaudichaudii ~ 100* 14-17 31-51* - 71+ 2 Coastal waters (Morbihan) Carnivore 1
Themisto gaudichaudii 32* 17-27 54-224% - 71 £ 1 Eastern Shelf waters Carnivore 1
Cephalopods
Ommastrephidae
Todarodes angolensis 11 197-221 129-214* 63,59 77 £ 3 Shelf waters Carnivore 1-2
Onychoteuthidae
Moroteuthis ingens 8 103-257 44-472% 43,49 79+ 1 Shelf waters Carnivore 1-3
Bivalvia
Mytilidae
Mpytilus edulis 36" 30-78 1.9-42% - 88 + 4 Cap Noir, Port-aux-Francais,  Filter-feeder
desolationis Mayes, Foch
Aulacomya atra 27* 38-97 4.8-65% - 80 + 4 Filter-feeder
Tunicates
Salpa thompsoni 9¢ 3342 3.1-5.4% - 95 +0 Shelf waters Herbivore
Salpa thompsoni 12* 33-44 3.1-5.9% - 94 +2 Shelf waters Herbivore
Fishes
Centrolophidae
Icichthys australis 8 212-312  125-416" 53,39 74 £+ 13 Shelf waters Carnivore 1-2
Channichthyidae
Channichthys 13 257-420 212-563" 53,89 79 +3 Shelf waters (Morbihan) Carnivore 2-3
rhinoceratus
Champsocephalus 10 299-328 164-232* 53,5¢ 74 £ 1 Shelf waters Carnivore 1-2
gunnari (adults)
C. gunnari (juveniles) 10 122-154 127-154 ND 74 £ 1 Shelf waters Carnivore 1
Congiopodidae
Zanclorhynchus 6 126-163 34-83" 33,39 70 £ 3 Southern Shelf waters Carnivore 1-2
spinifer
Gempylidae
Paradiplospinus 1 370 67" 3 70 Oceanic waters Carnivore 1-3
gracilis
Harpagiferidae
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Table 1 continued

Class or family Sample  Length  Fresh weight Sex Water Collection zone Functional
Species size (N) (mm) *: g or *: mg) content (%) group
Harpagifer sp. 12* 54-75 3.8-9.1" - 72+ 4 Shelf waters(Morbihan) Carnivore 1-2
Myctophidae
Electrona antarctica 15 48-78 1.3-4.4% ND 62 +2 Oceanic waters Carnivore 1-2
Gymnoscopelus fraseri 15 65-82 2.5-55" ND 69 £ 1 Oceanic waters Carnivore 1-2
G. nicholsi 4 129-164 22-42% 49 61 =6 Oceanic waters Carnivore 1-2
G. piabilis 14 114-162 17—44* 53,99 71 £ 3 Oceanic waters Carnivore 1-2
Protomyctophum bolini 15 49-58 1.2-22% ND 66 + 2 Oceanic waters Carnivore 1
P. tenisoni 15 3442 0.3-0.7% ND 73 +£2 Oceanic waters Carnivore 1
Notothenidae
Gobionotothen acuta 1 177 82" Q 75 Coastal waters (Morbihan) Carnivore 1-2
Lepidonotothen 10 234-310 177-386" 53,59 T4 £ 2 Shelf waters (Morbihan) Carnivore 1-2
squamifrons
Notothenia 1 195 160* @ 77 Shelf waters (Morbihan) Carnivore 1
cyanobrancha
N. rossii 13 137-288 57-450" 53,79, 1 78 +£3 Coastal waters (Morbihan) Carnivore 2-3
ND
Paranotothenia 6 147-168 74-119* 23,49 78 £ 1 Shelf waters (Morbihan) Carnivore 1-2
magellanica
Stomidae
Stomias sp. 14 102-178  1.1-4.7% ND 81 +6 Oceanic waters Carnivore 3

 Individuals in pooled samples

Water contents allowing recalculations of the metal con-
centrations from dw to wet weight (ww) are given in
Table 1.

Statistical analyses

Statistical analyses were performed in Microsoft Excel
2007 and Statsoft Statistica 11 and 12. Before analyses,
data were checked for normality of distribution and
homogeneity of variances using Shapiro—Wilk and Brown—
Forsythe tests, respectively, followed by ANOVA and post
hoc Tukey HSD. Spearman’s or Pearson’s correlations are
used to assess the degree of monotonic or linear depen-
dence, respectively, between two variables. A t-test was
used to assess whether female and male datasets differed
when available. All statistically significant results were set
at o =0.05 and all presented correlations should be
assumed significant unless stated otherwise.

Results

Metal concentrations in invertebrates and fishes from the
Kerguelen Island waters are presented in Table 2. Cu, Hg
and Zn concentrations showed, in a general way, a lesser

degree of variability when compared to Cd. Indeed, Cu, Hg
and Zn average concentrations vary one order of magni-
tude each, whereas Cd ranged over three orders of
magnitude.

Regarding the influence of biological factors in the
results, the only crustacean species for which gender
comparison was possible was Paraeuchaeta antarctica.
All four trace elements presented significant differences
between males and females, these latter showing signifi-
cantly higher Cd (p < 0.001), Cu (p = 0.004) and Zn
(p = 0.015) levels than males. This difference can be
attributed to their considerably higher length and weight
(Table 1). Concerning Hg, significantly higher
(p = 0.037) concentrations were found in males than in
females.

In cephalopods, there were no differences on metal
concentrations between males and females (for Todarodes
angolensis Cd, p,iest = 0.149 and Hg, p; st = 0.867;
for Moroteuthis ingens Cd, p,s = 0.206 and Hg,
Prtest = 0.923); moreover, no correlation (neither Pearson’s
nor Spearman’s) between biometrics and metal concen-
trations were found. In fish, metal concentrations showed
no significant difference between the sexes nor correlation
with the biometric parameters (total length and total
weight) with a few exceptions concerning Cd and Hg. Cd
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correlated significantly with total length in L. squamifrons
Eo Qi 3‘\ $ ;l Sl LCP‘ ;l ? t,’ﬁ 3 (r = 0.723, p = 0.018) and with both length and weight in
fleocosgogesyxa G. fraseri (r = 0.704, p = 0.005 and 0.862, p < 0.001,
respectively). Interestingly, a significant negative correla-
a2 tion of Cd with both biometric parameters was found for
4: ~ 0 n N~ < won 2 juvenile C. gunnari (r = —0.702, p = 0.023 and —0.636,
=8 i f i f i j ﬂ i j j p = 0.048) and Protomyctophum tenisoni (r = —0.549,
NIZ|v & aa=a881037 p = 0.034 and —0.627, p = 0.012). In turn, Hg correlated
azs3goQ 0 % (Spearman’s rank) significantly with total length in
2SSz IS Sz = 2 Gymnoscopelus piabilis (r = 0.591, p = 0.033) and Lepi-
éﬁ’n é é ér E'r é lé :Ir S S\L umL donotothen squamifrons (r = 0.670, p = 0.034), with
sSlegggsszszedcsss weight in Protomyctophum bolini (r = 0.697, p = 0.004)
and with both length and weight (shown respectively) in
A £8Z_3IE8 8 2 Channichthys rhinoceratus (r = 0.843, p = 0.02 and
il i E =SS 3 3 r=0.802, p = 0.07), G. fraseri (r = 0.771, p = 0.001 for
sle ey g' SN S 0 both), Notothenia rossii (r = 0.554, p = 0.049 and
Flslegszszszsz2 S <Zt 2 r=0.577, p=0.038) and Zanclorhynchus spinifer
(r =0.959, p = 0.002 and r = 0.965, p = 0.002). Finally,
in regard to between-element relationships, Cd and Hg
o | S o2 an TeS levels correlated with one another significantly in
5 é i é i l'r. é g = i 2‘ :' Champsocephalus gunnari (total, r = 0.947, p < 0.001)
and G. fraseri (r = 0.843, p < 0.001).
a Concerning Bivalves, two mussel species (the blue
wldgeessgsss Tav mussel, Mytilus edulis desolationis and the Magellan
Sl HHHHHHAH H H H mussel, Aulacomya atra) sampled in four different loca-
SIZ|2338932 323 tions (Foch, Cap Noir, Port-aux-Francais and Mayes
o v oo o 4 o Island) were analysed in the present study. A significant
SR LS I I8 negative correlation (Spearman’s rank) between Cd and Cu
9 O E i E 1 i - i j E (r = —0.725, p = 0.039) was found in the blue mussel,
sl 2422389 and also in the Magellan mussel (r = —0.798, p = 0.004).
K|lo o oo oooc oo o o . . L .
This latter species presented yet significant correlations
T®¥ s n g ae between Cu and total weight (r = —0.682, p = 0.042), Cd
2alggzdz23s 2:z3 and total weight (r = 0.673, p = 0.048) and Cd and Hg
*:4 :i ﬁ 2 ﬂ f i j j: i 2 (r = —0.702, p = 0.034). When all samples (both species)
|82 88388 £ 32 are considered together, there is a significant correlation
Clz|sssssss 183~ between Cd and total weight (r = 0.547, p = 0.007) and
P v o < < - < also a significant negative correlation between Cd and Cu
Z - - -7 (r = —0.537, p = 0.009).
L g
S S ] Q Q Q o Q Q
ggé:ﬁég%ééém Discussion
»|EE25855s2E%5=
E _5:% 2222 g 5 22§ The main objective of this study was to provide baseline
66555588552 i 0% y was 10 pro
levels in a wide range of phyla which constitute the prey
for high trophic level organisms such as large fish, seabirds
g - and marine mammals. The species collected in the present
§ 7 s § § % study represent a wide range of ecological groups from the
! ;o g L:’) & 2 ?c 2 . pelagic/benthic and neritic/oceanic communities from the
E Tz 8 8 g 53 = Kerguelen Island waters. The size of the collected organ-
% §: ? § éi 3 oz § % § T g § isms falls within the range of the size preyed by top
- s 2 § § § % § é % g § g 3 predators from this area and, more specifically, from the
2| 5|3 § 503 S ER3E ‘§ S 3 é large seabird community that includes 35 species
SIS|I&|IOUROTO <& ad|] (Weimerskirch et al. 1989).
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Influence of biological factors on metal
concentrations

Among factors influencing metal concentrations, sex dif-
ferences were found for the crustacean Paraeuchaeta
antarctica. Higher concentrations of Cd, Cu and Zn in
female P. antarctica might be due to the fact that metals
are highly retained by copepods and Cd, Cu and Zn
bioaccumulation with the size is likely to have played a
major role in this difference, not necessarily via diet, but
also possibly via the dissolved phase, in a passive way
(Wang et al. 1996; Wang and Fisher 1998) or else via a
possible remobilisation due to sexual maturation, as further
discussed. In contrast to Cd, Cu and Zn, higher Hg con-
centrations in males is likely due to the fact that the sam-
pled females could have already reached sexual maturity
size and have excreted Hg in the laid eggs. Indeed,
maternal transfer may act as a major pathway for Hg(II)
and methyl-Hg elimination in crustaceans (Tsui and Wang
2004). The size of the specimens analysed here ranged
from 5 to 10 mm, whereas this species presents CV (last
copepodite stage) at 6.5 £ 0.3 mm and CVI (adults) at
8.7 & 0.4 mm (Bocher et al. 2002); therefore, the sample
set likely contained sexually mature individuals.

In cephalopods, the lack of difference in Cd and Hg
concentrations between males and females is surprising
considering the sexual dimorphism in both species, females
reaching larger sizes than males in both squid species.
Indeed, sexual dimorphism and ontogenic effects can
influence in metal concentrations in cephalopods (e.g.
Pierce et al. 2008; Chouvelon et al. 2011). The absence of
variation of metal concentrations in both cephalopod spe-
cies is likely due to the limited number of specimens of
each sex and limited size range for both T. angolensis and

=3
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Salps (2) |
Euphausia frigida
Salps (1) —x
Euphausia triacantha —H
Euphausia vallentini (shelf)
77

M. ingens. Nevertheless, metal concentrations found in
both squid species were among the highest for all the
species from the present study, especially for Cd. Cepha-
lopods are considered as superbioaccumulators of many
trace elements and their capacity to bioaccumulate
remarkable Cd levels was already shown in several envi-
ronments (Martin and Flegal 1975; Miramand and Guary
1980; Miramand and Bentley 1992; Dorneles et al. 2007,
Penicaud et al. 2017), including Kerguelen waters (Busta-
mante et al. 1998b). Even though the specific proteins
involved in Cd bioaccumulation are not fully known, its
significant correlation (Spearman’s rank) with Zn
(r = 0.902) in T. angolensis (the highest Cd level) would
suggest the involvement of MTLP in Cd detoxifica-
tion even such proteins seem not to be the main detoxifi-
cation pathway in cephalopods (Bustamante et al. 2002;
Penicaud et al. 2017). For Hg as well, cephalopods were
among the most contaminated species. Within this group,
Hg is mainly under the highly bioavailable organic form
(Bustamante et al. 2006) and therefore they represent a
significant source of this element for their predators.

In fish, the significant negative correlation of Cd with
both biometric parameters (size and weight) for C. gunnari
and P. tenisoni could be due to a higher Cd exposure in
earlier life stages (due to diet, habitat or maternal transfer),
with a growth dilution effect taking place and concentra-
tions decreasing thereafter. Benthic organisms present, in a
general way, overall lower Cd values when compared to
pelagic ones (Fig. 2), and this is in accordance with pre-
vious studies describing C. gunnari as benthopelagic, but
with a shift from the pelagic to the benthic environment as
the fish grow (Kock 2005a, b). Concerning Hg, the corre-
lations found between this element and biometrics are
likely related to the bioaccumulation of Hg as the fish
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grow. Moreover, benthic species presented mostly higher
Hg levels than pelagic ones (Fig. 2). In sediments, organic
carbon and microbial activity play an important role on Hg
bioavailability as microorganisms highly contribute to the
methylation of inorganic Hg (Andersson et al. 1990),
enhancing the exposure of benthic species to Hg. In regard
to Cd and Hg positive significant correlations with size and
weight in C. gunnari and G. fraseri, it would mean that
these species are simultaneously exposed to sources of both
contaminants. This could be due to the consumption (1) of
one specific prey that presents high concentrations of Cd
and Hg or (2) of several prey that present conversely high
concentrations of Cd or Hg. The second hypothesis seem
more likely in regard to C. gunnari, since its diet in a
subantarctic environment (South Georgia Archipelago)
comprised a large proportion of Antarctic krill Euphausia
superba, knowing that Euphausids had comparatively high
Hg levels (See Table 2) and, more importantly, the
hyperiid amphipod 7. gaudichaudii (with very high Cd
levels) as the most frequent prey (Kock et al. 1994). In
regard to G. fraseri, it feeds mainly on copepods and, to a
lesser extent, on the Euphausid Thysanoessa spp. (Saunders
et al. 2015), both presenting high Cd and Hg concentrations
(Table 2). Therefore, it seems reasonable to state that the
first one of the previous hypotheses would be more likely
in this case.

The influence of the trophic position on metal concen-
trations is examined in Fig. 2, which presents the concen-
trations of Cd and Hg stratified by trophic level. In this
regard, stable isotope ratios of nitrogen bring slightly
superior data for trophic levels (TLs) of six fish species
included in the present study (Cherel et al. 2010), all of
them inferior to one trophic level: 0.9 TL for Protomyc-
tophum bolini, 0.7 TL for Gymnoscopelus nicholsi, 0.5 TL
for P. tenisoni, 0.3 TL for Electrona antarctica and G.
fraseri and finally 0.2 TL for G. piabilis. The difference
between these TLs obtained by different methods was
negligible and did not change the stratification of concen-
trations along the TLs.

Cd concentrations ranged over 4 orders of magnitude,
ie. from 0.063 ugg~' in Gobionotothen acuta to
79.4 ng g~ ' in T. angolensis across the different trophic
levels, interestingly, a relatively similar pattern to the one
reported for an Arctic marine food web (Macdonald and
Sprague 1988). Moreover, a large intraspecific variation is
shown by different taxa as well, such as in salps and spe-
cially crustaceans (Table 2). However, no significant cor-
relation between Cd concentrations and the trophic level of
the species was found in our sampling, suggesting that Cd
is not biomagnified within our sampling set. However, it is
important to remark that the increase in trophic level within
our sample set does not always infer a direct food—con-
sumer link between the sampled organisms, so

biomagnification strictu sensu must be regarded with cau-
tion. Moreover, samples were taken in different years and
interannual and local differences are possible as well. Also,
the transfer of Cd appears to be more related to the species
rather than to the trophic level itself, as previously shown
in other environments (Miramand et al. 1999; Pigeot et al.
2006). This specificity is likely related to Cd bioaccumu-
lation capacities which are particularly elevated for some
taxa such as the hyperiid amphipods Themisto sp. (e.g.
Ritterhoff and Zauke 1997) and cephalopods (e.g. Busta-
mante et al. 1998a, 2002; Dorneles et al. 2007, Penicaud
et al. 2017), or particularly weak as in most marine fish
species (Wang 2002; Kojadinovic et al. 2007).

The lack of biomagnification is apparently repeated for
Hg in our set of samples, contrary to what is previously
reported for local avifauna (Blévin et al. 2013; Carravieri
et al. 2014b). It is important to remark that Hg biomagni-
fication concerns its main organic form, i.e. methyl-Hg,
due to its high bioavailability (e.g. Kannan et al. 1998),
whereas our analyses were made only for total Hg. A much
higher assimilation efficiency is displayed for methyl-Hg
than for inorganic Hg and a slight variation in this property
may determine whether or not some of the element is
biomagnified (Reinfelder et al. 1998). Yet, the proportion
of methyl-Hg is poorly documented for low trophic level
prey in the Southern Ocean. This issue clearly deserves
further research in this ecologically important and repre-
sentative oceanographic area.

Sessile organisms as indicators of possible secondary
metal sources

In mussels, the positive correlation between Cd and weight
and the negative correlation between Cd and Cu suggest
that as they grow, the homeostatically controlled Cu is
proportionally surpassed by the bioaccumulative Cd in
their organisms, likely bound to metallothioneins (Klaassen
et al. 1999). Indeed, mussels produce Cd-induced metal-
lothioneins (Mackay et al. 1993) and Cd can displace
essential metals such as Cu and Zn normally associated to
these proteins (Amiard et al. 2006). Tukey post-hoc tests
resulted in separated groups for Cd (raw data for average
lot length and mass and trace element concentrations are
available as Online Resource 1): one group containing
samples from Foch, Cap Noir and Port-aux-Francais; and
the second one, from Port-aux-Francais and Mayes (always
in crescent order). This result suggests some local Cd
source enrichment inside the Gulf of Morbihan, where
Port-aux-Frangais, the largest human settlement in the area
(between 45 in austral winter and 120 people in austral
summer) and Mayes are both located. Conversely, both
other locations (Foch and Cap Noir) are exposed to the
open ocean, in the northern shore. This is apparently
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contrary to the T. gaudichaudii data (Table 2), which
presented levels for continental shelf samples three times
higher than coastal ones. However, the average individual
weight of these amphipods from the continental shelf
samples was around three times the one from coastal
samples, and therefore there is likely an influence from age
and, thus, from bioaccumulation. A strong effect of age is
confirmed by a previous study on the closely related spe-
cies T. libellula from the Greenland Sea (Ritterhoff and
Zauke 1997). Nevertheless, a growth dilution effect should
be expected for the continental shelf samples, which leaves
two hypotheses: whether exposure is increased for larger
individuals, or the influence of local Cd sources within the
Gulf of Morbihan is not as important to 7. gaudichaudii as
it is for mussels. Since the literature presents related spe-
cies (T. japonica and probably T. gaudichaudii as well)
switching from herbivory to carnivory during their life
cycles (Pakhomov and Perissinotto 1996), the first
hypothesis remains more likely, corroborating the exis-
tence of a local Cd secondary source.

Using fish for comparison did not prove to be helpful,
since the only two species collected inside the Gulf were
benthic (N. rossii and P. magellanica) and there was an
evident bias in Cd levels towards pelagic species, as stated
above, possibly because of Cd-enriched upwelled waters
around the archipelago (Bustamante et al. 1998b, 2003).
For coastal sites inside the Morbihan Bay, another source
can be suspected. Indeed, Mayes provides diverse and
highly suitable breeding sites for large colonies of bur-
rowing petrels, which breed there in very high densities
(Weimerskirch et al. 1989), with up to 6 burrows per
square metre (Mougeot et al. 1998). Seabird faeces can
alter the trace metal composition in soils (Headley 1996)
and, therefore, colonies might work as secondary trace
metal sources (see Choy et al. 2010; Espejo et al. 2014).
Water percolating bird colonies has already been shown to
have an important role in the exposure of terrestrial flora to
contaminants in Antarctic lands (Cipro et al. 2011). It is
therefore plausible to assume an analogous effect for the
mussels when this water reaches the sea. Nevertheless, this
subject deserves further investigation.

Comparison with similar ecosystems in other
regions

Table 3 presents a comparison of the obtained results with
those from the literature despite the scarcity of data for
equivalent organisms in similar environments, which
reinforces the need for studies such as this one. Therefore,
taxonomic, geographic and ecological differences might
present some bias that has to be taken into account when
interpreting the data.

@ Springer

Having said that, the jellyfish in our work showed Cd
values at least one order of magnitude higher than its
counterparts from Northeastern Atlantic waters (Caurant
et al. 1999). Its Zn concentrations were around three times
higher as well, not characterising the coaccumulation of Cd
and Zn seen in other cases. To the best of our knowledge,
the presence of metallothioneins in jellyfish has not been
reported yet.

For Ctenophora, our results are somewhat closer to the
ones for the North Atlantic Ocean than the ones for the
Mediterranean, suggesting an influence from local condi-
tions. Tunicates presented results for Cd and Cu in a rea-
sonable agreement with the ones from the literature.

Crustaceans, in turn, showed some differences: in a
general way, Euphausia spp. values of Cd, Cu and Zn are
lower than those in organisms from Antarctica and
Thysanoessa spp. values for Cd were higher than those in
organisms from the Bering Sea, closer to pollution sources
than Kerguelen Islands (Zauke et al. 2003). So, the dif-
ference might be due to a species-specific reason or in a
lesser extent, to the influence of water masses dynamics.

As for mollusks, bivalves presented lower values when
compared to Antarctic filter feeders, even if the previously
discussed influence of a local source is considered (Ahn
et al. 1996; Bargagli 2001). Cephalopods, on the other
hand, presented similar Hg levels when compared to
another subantarctic environment, Macquarie Island
(McArthur et al. 2003) or slightly superior when compared
to branchial hearts concentrations from samples collected
off Amsterdam Islands (Kojadinovic et al. 2011), which is
located north of the Polar Front. Care must be taken when
comparing digestive gland data (Kojadinovic et al. 2011) to
muscle or even whole organism data, since this organ
might present higher concentrations, even if it does not
greatly contribute to the total Hg burden in some oceanic
squids (Bustamante et al. 2006).

For benthic fish species, Antarctic organisms (Table 3)
presented levels for both Cd and Hg one order of magni-
tude higher than in the present study. For pelagic ones, the
only truly pelagic neritic fish present in all sizes throughout
the water column is Pleuragramma antarctica (W0hrmann
et al. 1997). For this species, Brasso et al. (2014) present
Hg data averaging 0.014 ug g=' for juveniles and
0.021 pg g~ ! for adults (for whole fish, after conversion to
dry weight). This is an apparent contradiction to the trend
previously discussed (Antarctic organisms with higher
levels than subantarctic ones); however, this species feeds
on a lower trophic level than the ones in Table 3 and also
lives in shallower shelf waters (Giraldo et al. 2011;
Pinkerton et al. 2013), which makes it less exposed to these
contaminants. Nevertheless, Goutte et al. (2015) present an
average of 0.065 pg g~ ' for P. antarcticum collected in
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Adélie Land, Antarctica, much similar to the concentration
we found for E. antarctica.
& Taking all the previous information into account, Ker-
S g ‘Sf E guelen marine invertebrates and fish seemed to present
-~ aoag lower metal concentrations when compared to other sub-
% g § Es G Antarctic and especially to Antarctic environments, with
g 3 g ° e the exception of some particular species, notably 7. gau-
% § E % % dichaudii (see also Stoeppler and Niirnberg 1979; Hennig
x| T O @mam et al. 1985; Rainbow 1989; Kahle and Zauke 2003:
McArthur et al. 2003; Guynn and Peterson 2008; Beltcheva
et al. 2011 and the comparison in Table 3).
g Implications concerning the transfer to predators
| | | |
= Because all of the species investigated here constitute to a
g % % éf wide extent, primary or secondary prey for seabirds
z S oS o breeding on the Kerguelen Islands, it is important to pro-
S j f ﬁ vide information on their exposure to trace elements. This
2 § § %‘ i is especially important for the non-essential Cd and Hg
which can have toxic effects at different levels on wild
vertebrates (e.g. Gallien et al. 2001; Tan et al. 2009; Goutte
et al. 2014; Tartu et al. 2013). In addition to linking prey
and predator, this section is intended to highlight the fact
o} that some of the accumulation/magnification occur not only
in high trophic levels.
In regard to Cd, the main homogenous group after
Tukey HSD was composed by all species but 7. gau-
dichaudii, jellyfish and both the cephalopods. 7. gau-
Sl dichaudii is an important part of local macrozooplankton
and the main prey for local planktivorous seabirds (Bocher
et al. 2001), therefore their main Cd source (Bocher et al.
E 2003). Jellyfish showed a Cd concentration one to two
2 s g orders of magnitude higher than the fish, similar to the
2 8388 findings of Caurant et al. (1999). Jellyfish could therefore
a_% g £ § represent a vector for Cd transfer, since their energetic
g g f f value is likely very low (Caurant et al. 1999) so their
g 'g E: E; predators should ingest a large amount of them to satisfy
£| & j § ;}3 their energetic needs. Cephalopods, in turn, may also
S| €35 2 2 function as vectors for Cd transfer to top predators (e.g.
S8 2 & & Bustamante et al. 1998a; Lahaye et al. 2005). This role is
even more evident at higher latitudes as they showed
somewhat higher Cd concentrations in Antarctic and sub-
antarctic areas when compared to temperate and tropical
waters (e.g. Dorneles et al. 2007; Pierce et al. 2008;
g _ Kojadinovic et al. 2011). Since cephalopods are present in
.5‘: - % the diet of several predators from Kerguelen Islands such
‘§ § é E as albatrosses or elephant seals (Guinet et al. 1996; Cherel
! § 3 ‘S/ § et al. 2000, 2004; Lescroél et al. 2004), their role as Cd
E = S § 3 vectors is evident. Reported concentrations in the kidney of
% £ % g % seabirds from other subantarctic areas such as Gough
o I S Island in the South Atlantic Ocean clearly highlighted that
% § ST oo a seabirds feeding on squids displayed higher Cd
=lwm
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concentrations that crustacean- and fish-feeder species
(Muirhead and Furness 1988).

Hg, as previously presented, had a much less species-
specific distribution, with less interspecific variation when
compared to Cd, even though some stratification within the
trophic levels could be detected. No statistical difference
was found among all invertebrates taken together (Tukey
HSD) and, concerning the fish, only Notothenia rossii,
Gymnoscopelus piabilis, G. fraseri and C. rhinoceratus (in
crescent Hg concentration) departed from a homogenous
group that contained all the other species. The unicorn
icefish C. rhinoceratus presented elevated Hg concentra-
tions, which is consistent with its feeding ecology (Kock
2005a, b): indeed, the diet of juveniles is composed by
crustaceans and then adults shift to forage on various
notothenioids (mostly benthic) and mesopelagic fish in a
lesser extent. In turn, mesopelagic fish, notably the myc-
tophids, are among the most Hg contaminated. Therefore,
predators relying on benthic or benthopelagic prey, as the
gentoo penguin Pygoscelis papua (Lescro€l and Bost 2005)
or mesopelagic fish, such as elephant seals Mirounga
leonina (Cherel et al. 2008) and the white-chinned petrel
Procellaria aequinoctialis (Delord et al. 2010), would be
highly exposed to Hg.

The present study highlights that not only top predators
will be exposed to elevated amounts of Cd and Hg through
their diet when consuming specific types of prey, but also
lower trophic level organisms can be subject to the same
effect. Zooplankton-eating predators are exposed to Cd
especially if they consume the amphipod T. gaudichaudii
(i.e. Halobaena caerulea, Pachyptila desolata, P. belcheri,
Pelecanoides georgicus and P. wurinatrix, according to
Bocher et al. 2003). Cephalopod-eating species as the
wandering albatross (Diomedea exulans) and the great-
winged petrel (Pterodroma macroptera) are also highly
exposed to Cd but also to Hg which is consistent with the
concentrations recorded in their internal tissues and their
feathers (Muirhead and Furness 1988; Stewart et al. 1999;
Anderson et al. 2009; Bustamante et al. 2016; Tavares et al.
2013) and also with blood (Anderson et al. 2010; Carravieri
et al. 2014a). Finally, fish eating species, as the grey
(Procellaria cinerea) or the white-chinned petrel (Procel-
laria aequinoctialis) are highly exposed (see Stewart et al.
1999; Anderson et al. 2009; Cipro et al. 2014) to Hg
through the consumption of mesopelagic and benthic fish
(Delord et al. 2010).
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