Stable isotope patterns of mesopelagic communities over two shallow seamounts of the south-western Indian Ocean

Pavanee Annasawmy a, b, *, Yves Cherel c, Evgeny V. Romanov d, François Le Loc’h e, Frédéric Ménard f, Jean-François Ternon e, Francis Marsac a, b

a MARBEC, IRD, Univ Montpellier, CNRS, Ifremer, Site, France
b Department of Biological Sciences and Marine Research Institute/ICEMASA, University of Cape Town, Cape Town, South Africa
c Centre d’Etudes Biologiques de Châté (CEBC), UMR7372 du CNRS- La Rochelle Université, Villiers-en-Bois, France
d Centre technique d’appui à la pêche réunionnaise (CAP RUN - CITEB), Ile de la Réunion, France
e IRD, Univ Brest, CNRS, Ifremer, LEMAR, IUEM, F-29286, Plouzané, France
f Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, UM110, Marseille, France

A R T I C L E I N F O

Keywords:
Micronekton
Crustaceans
Fish
δ13C
δ15N
Trophic level
Squid

A B S T R A C T

The stable carbon (δ13C) and nitrogen (δ15N) isotope values of soft tissues of micronekton (crustaceans, squid, mesopelagic fish) and zooplankton were measured from organisms collected on the RV Anteo at two seamounts located in the south-western Indian Ocean: La Pérouse (summit depth ~60 m) and “MAD-Ridge” (thus named in this study; summit depth ~240 m). Surface particulate organic matter (POM-Surf) showed higher δ13C at the more productive MAD-Ridge than at the oligotrophic La Pérouse seamount. Particulate organic matter and zooplankton were depleted in δ15N at La Pérouse pinnacle compared with MAD-Ridge. Gelatinous organisms and crustaceans occupied the lowest and intermediate trophic levels (TL ~2 and 3 respectively) at both seamounts. Mesopelagic fish and smaller-sized squid sampled at both seamounts occupied TL ~2 to 3, whereas the large nektonic squid, Ommastrephes bartramii, collected at MAD-Ridge only, exhibited a TL of ~5. The δ15N values of common open-water mesopelagic taxa were strongly influenced by specimen size and feeding habits at both seamounts, with an increase in δ15N values with increasing size. Carnivorous fish species sampled exclusively over the seamounts’ flanks and summits exhibited TL values of ~4, irrespective of their wide size ranges. The work could not demonstrate any differences in δ13C values of mesopelagic fish between the seamounts and the surrounding oceanic areas. The study segregated clusters of mesopelagic organisms according to their δ13C and δ15N values, with variations in stable isotope values reflecting a complex range of processes possibly linked to productivity as well as biological and ecological traits of the species (size and feeding mode).

1. Introduction

Micronekton are a broad group of organisms mostly dwelling in the mesopelagic zone (~<1000 m). They consist of crustaceans (adult euphausiids, hyperid amphipods, pelagic decapods and mysids), cephalopods (small species and juvenile stages of large oceanic species) and fish (mainly mesopelagic species and juveniles of pelagic fish) (Brodeur and Yamamura, 2005; De Forest and Drazen, 2009; Ménard et al., 2014). They range in size from 2 to 20 cm and represent a substantial biomass in oceanic waters (Brodeur and Yamamura, 2005). Many species exhibit extensive diel vertical migrations (DVM), thus playing an important role in the biological pump by transporting carbon and nutrients from the epipelagic to the mesopelagic zone (Hidaka et al., 2001; Brodeur and Yamamura, 2005; Catul et al., 2013; Bianchi et al., 2013). Micronekton also form a key trophic link between zooplankton and top predators because they are preyed upon by several species of seabird, tuna and billfish (Guinet et al., 1996; Bertrand et al., 2002; Brodeur and Yamamura, 2005; Potier et al., 2007; Karakulak et al., 2009; Cherel et al., 2010; Danckwerts et al., 2014; Jaquemet et al., 2014; Duffy et al., 2017; Watanuki and Thiebot, 2018). Various studies have investigated the trophic interactions of micronekton to better understand their role in foodwebs across numerous ocean basins (Fanelli et al., 2011b; Colaco et al., 2013; Fanelli et al., 2013; Ménard et al., 2014; Valls et al., 2014a, b; Annasawmy et al., 2018). For instance, mesopelagic organisms were

* Corresponding author. MARBEC, IRD, Univ Montpellier, CNRS, Ifremer, Site, France.
E-mail address: angelee-pavanee.annasawmy@ird.fr (P. Annasawmy).

https://doi.org/10.1016/j.dsr2.2020.104804
Received 19 March 2019; Received in revised form 24 February 2020; Accepted 19 May 2020
Available online 5 June 2020
0967-0645/© 2020 Elsevier Ltd. All rights reserved.
shown to transfer energy between primary consumers and deeper benthic and benthopelagic animals at Condor seamount in the Atlantic (Colaço et al., 2013).

Tuna, billfish, pelagic armorheads, alfonsinos and orange roughy are common predators fished at seamounts in the Atlantic (Fonteneau, 1991; Morato et al., 2008; Dubroca et al., 2013), Pacific (Rogers, 1994; Koslow, 1997; Holland et al., 1999; Musyl et al., 2003; Paya et al., 2006; Morato et al., 2010) and Indian oceans (Romanov, 2003; Clark et al., 2007; Marsac et al., 2014). Although, La Pérouse does not represent an outstanding fishing spot, tuna (Thunnus spp.) and swordfish (Xiphias gladius) are present in the vicinity of the seamount throughout the year (Marsac et al., 2020). Albacore (Thunnus alalanghe), bigeye (T. obesus), yellowfin (T. albacares) tuna and swordfish commonly occur along the Madagascar Ridge and MAD-Ridge pinnacle (IOTC, www.iotc.org/data-and-statistics). The Madagascar Ridge has also been targeted for orange roughy in 1999/2000 before the catch dropped significantly in subsequent years (Ingole and Koslow, 2005; Lack et al., 2003). Due to the increased pressure on marine organisms, characterizing the overall energy flow within pelagic ecosystems (Young et al., 2015) contributes to making better informed fisheries and ecosystem-based management decisions.

Two seamounts of the southwestern Indian Ocean (SWIO), La Péruse and an unnamed pinnacle, thereafter named “MAD-Ridge”, were studied in an effort to understand how seamounts may affect diel vertical migrations and aggregations of micronekton (Annasawmy et al., 2019, 2020). While micronekton acoustic densities were not significantly different between the summit and immediate vicinity of the pinnacles, dense aggregations of scatterers, referred to as seamount-associated species, were recorded over the summit of both seamounts during day and night (Annasawmy et al., 2019). La Péruse is situated in the Indian South Subtropical Gyre (ISSG) province (Longhurst, 2007; Reygondéau et al., 2013) with low mesoscale activities and primary productivity, whereas MAD-Ridge is located within an “eddy corridor” to the south of Madagascar, in a region with high occurrence of cyclonic and anticyclonic eddies and relatively high sea surface chlorophyll concentrations all year round compared to La Péruse (Halo et al., 2014; Annasawmy et al., 2019; Vianello et al., 2020). The enhanced productivity on the Madagascar shelf and its offshore entrainment by mesoscale eddy interactions (Quartly et al., 2006), were one possible reasons leading to greater micronekton acoustic densities at MAD-Ridge relative to La Péruse (Annasawmy et al., 2020). Trapped, enclosed circulations known as Taylor columns may also develop over seamounts and contribute to the retention of productivity (Genin and Boehlert, 1985; Dower et al., 1992; Mourino et al., 2001; Mohn and White, 2007). No Taylor columns were observed at La Péruse and MAD-Ridge seamounts, however, during the cruises most likely because of the high current speeds observed over the summits and the seamount structure not being favourable for the development and retention of such features (Annasawmy et al., 2020).

Foodwebs are shaped by a complex set of interactions controlled by the availability of organic (C-based nutrients) and inorganic (such as nitrate, nitrite, phosphate and silicate) nutrients, the efficiency of energy transfer to higher trophic levels and the control of species biomass by predators (Pomeroy, 2001). Carbon (δ13C) and nitrogen (δ15N) stable isotope analyses are a valuable tool for foodweb investigations in deep-sea ecosystems (Michener and Kaufman, 2007) and are based on time-integrated assimilated food (Martínez del Rio et al., 2009). Trophodynamic studies commonly employ δ13C to investigate the source of organic matter and δ15N to determine trophic level and trophic interactions (Michener and Kaufman, 2007). The heavier isotopes (13C and 15N) are preferentially retained in tissues of consumers relative to their prey, while lighter 12C and 14N isotopes are preferentially excreted (Fry, 2000). Overall, there is a small isotopic enrichment of 0.5–1‰ in the heavier 13C isotope of an organism’s tissue relative to its diet (Fry, 2000). Differences in δ13C values can thus indicate different sources of primary production such as inshore vs offshore, or pelagic vs benthic contributions to food intake (Hobson et al., 1994; Rubenstein and Hobson, 2004). In contrast, δ15N values increase stepwise by 2–4‰ in a consumer’s tissue relative to its diet (Vanderklift and Ponsard, 2003; Michener and Kaufman, 2007; Martínez Del Rio et al., 2009), thus allowing the discrimination of trophic levels.

Identification of the trophic position of various biotic components of the pelagic ecosystem is essential for our understanding of ecosystem functioning and trophic interactions. Food chain length (i.e. number of TLs) is a descriptor of community structure and ecosystem functioning (Post et al., 2000). Measuring the length of a food chain integrates the assimilation of energy flow through all trophic pathways leading to top predators. The understanding of this is essential from an ecosystem-based management perspective, and may provide important insights on ecosystem responses to fisheries pressure and/or climate-induced changes. Knowledge of micronekton trophic interactions at seamount ecosystems of the SWIO are scarce and fragmentary. In order to investigate the trophic pathways at La Pérouse and MAD-Ridge, δ13C and δ15N values of POM, zooplankton and micronekton were measured and trophic levels were estimated using additive isotopic models (as in Post, 2002, and Caut et al., 2009). The main goals of this study were to investigate at La Péruse and MAD-Ridge seamounts, (1) the trophic interactions of sampled mesopelagic organisms, (2) the influence of trophic groups, specimen size and time of sampling (MAD-Ridge only) on δ13C and δ15N values of micronekton, (3) the δ13C and δ15N values of omnivorous/carnivorous fish collected over the flank relative to the vicinity of La Péruse; and summit, flanks and vicinity of MAD-Ridge compared with an off-seamount location in the southern Mozambique Channel.

2. Material and methods

2.1. Study sites

2.1.1. La Pérouse seamount

La Pérouse is located on the outskirts of the oligotrophic ISSG province (Longhurst, 1998, 2007; Reygondéau et al., 2013), 160 km northwest of Réunion Island at latitude 19°43’S and longitude 54°10’E (Fig. 1a and b). The seamount summit reaches the euphotic zone, being ~60 m below the sea surface. The summit is 10 km long with narrow and steep flanks and rises from a depth of 5000 m from the ocean floor. The pineapple was sampled on board the RV Anthea from 15 to 29 September 2016 (DOI: 10.17600/16004500).

2.1.2. MAD-Ridge seamount

This topographic feature, located ~240 km to the south of Madagascar, along the Madagascar Ridge at latitude 27°29’S and longitude 46°16’E has been named “MAD-Ridge” in this study (Fig. 1a, c). The seamount rises from a depth of 1600 m from the ocean floor to ~240 m below the sea surface. The summit is 33 km long (north to south) and 22 km wide (east to west). MAD-Ridge is surrounded by four smaller pinnacles, reaching depths of 600 m, 900 m, 800 m and 1200 m below the sea surface, between latitudes 27°5’28’’S and longitudes 46°E-46°45’E. The MAD-Ridge pinnacle was sampled on board the RV Anthea (DOI: 10.17600/16004800 and 10.17600/16004900) from 26 November to 14 December 2016.

2.2. Satellite observations

Sea surface chlorophyll data were downloaded from the MODIS dataset (http://oceancolor.gsfc.nasa.gov) at a daily and 4.5 km resolution. Five-day averages were calculated to obtain a proxy of phytoplankton abundance in the surface layer. To investigate the annual variability in surface chlorophyll a concentrations, monthly mean concentrations were averaged from January to December 2016 for the defined regions (La Pérouse: 18.5–20°S/53-33’E; MAD-Ridge: 27–28°S/44–48’E) (Fig. 2).
2.3. Sampling and sample processing

2.3.1. Particulate organic matter (POM)

During both cruises, water samples for stable isotope analyses of POM were collected using Niskin bottles mounted on a Sea-Bird 911+ CTD rosette system at approximately 5 m depth (referred to as POM-Surf) and at the depth of maximum fluorescence (referred to as POM-Fmax) between ~60 and 125 m at La Pérouse and ~80 and 150 m at MAD-Ridge. Between 4 and 8 l (depending on the load of each sample) of seawater were filtered on precombusted 25 or 47 mm glassfibre of 0.7 μm pore size. The filters were oven-dried at 50°C for 24 h and saved at room temperature in aluminium foil until further analyses.

2.3.2. Zooplankton sampling

Zooplankton samples were collected during daylight only with a Bongo net (300 μm mesh to a maximum depth of 500 m and 200 μm mesh to a maximum depth of ~200 m) towed obliquely at La Pérouse (10 stations). At MAD-Ridge, zooplankton samples were also collected during daylight with a Bongo net (300 μm mesh to a maximum depth of 500 m towed obliquely and 63 μm mesh to the depth of the maximum fluorescence towed vertically) at 19 stations. The nets were fitted with a flowmeter and were towed at a vessel speed of 1.5–2 knots for 15–20 min (0.28 m² mouth area). Zooplankton samples from the 200 and 300 μm meshes at La Pérouse and, from the 63 and 300 μm meshes at MAD-Ridge were combined at each station. The combined samples at each station were sieved on a stack of seven sieves of decreasing mesh size and divided into six fractions: >4000 μm, 4000-2000 μm, 2000-1000 μm, 1000-500 μm, 500-250 μm, 250-125 μm during La Pérouse and MAD-Ridge and a 7th fraction (125-63 μm) during MAD-Ridge only. Each fraction was oven-dried at 50°C for 24 h and saved at room temperature in aluminium foil until further analyses.

2.3.3. Trawl sampling

During both cruises, a 40-m long International Young Gadoid Pelagic Trawl (IYGPT) net (codend with 0.5 cm knotless nylon delta mesh; front tapering end with 8 cm mesh; ~96 m² mouth opening) was towed at a vessel speed of 2–3 knots for 60 min during La Pérouse and for 30 min during MAD-Ridge to sample mesopelagic organisms. Trawls were carried out in the shallow (0–200 m), intermediate (200–400 m) and deep...
(below 400 m) layers during both cruises (Supplementary Material, Table S1). Trawl stations at La Pérouse and MAD-Ridge (Fig. 1b and c) were further classified into the categories summit, flank and vicinity according to whether they occurred on the summit plateau of the seamounts, along the flanks (seafloor depth of 300–1300 m) or in the immediate vicinity (depth >1300 m) (Supplementary Material, Table S1). Four other mesopelagic trawls (#18–21) were conducted in the southern Mozambique Channel (depth >4000 m) during the MAD-Ridge cruise as reference stations for non-seamount locations within the EAAF province (Fig. 1a).

All organisms collected with the trawl were sorted on board, divided into four broad categories (gelatinous, crustaceans, cephalopods and fish), counted and identified to the lowest possible taxon. Individuals from these four broad categories were randomly selected according to their occurrence and abundance and measured (total length for selected gelatinous organisms, abdomen and carapace length for selected crustaceans, dorsal mantle length for cephalopods and standard length for fish). Approximately 2–5 mg of soft tissues of these selected individuals (muscle tissue for leptocephali, muscle abdomen for crustaceans, mantles for squid, dorsal muscle for fish) and whole salps and pyrosomes, were sampled on board in 2 ml Eppendorf tubes and stored at −20 °C, before being processed in the laboratory to determine δ13C and δ15N values (section 2.4). A full list of selected gelatinous and micronekton taxa used in stable isotope analyses is given in Supplementary Material, Table S2.

2.4. Stable isotope analysis

Micronekton and zooplankton samples were freeze-dried using Christ Alpha 1–4 LSC freeze-dryers for 48 h and ground to a fine homogeneous powder using an automatic ball mill RETSCH MM200. As variations in lipid composition may influence δ13C and δ15N values (Bodin et al., 2009; Ryan et al., 2012), lipids were removed from zooplankton and micronekton samples with dichloromethane on an accelerated solvent extraction system (ASE®, Dionex; Bodin et al., 2009) at the Plateau Chimie/Pôle Technique MARBEC (Sète, France). Prior to δ13C analyses, POM filters and zooplankton samples reacted with 1 N HCl to remove carbonates (Cresson et al., 2012). Untreated sub-samples of POM and zooplankton were used to measure δ15N because acid treatment may lead to the loss of nitrogenous compounds (Kolasinski et al., 2008). POM filters were cut, folded and put into tin capsules. Approximately 400–600 μg of each zooplankton and micronekton sample were weighed and placed in tin capsules. These samples were run through continuous flow on a Thermo Scientific FLASH 2000 elemental analyser coupled to a Delta V Plus mass spectrometer at the Pôle de Spectrométrie Océan (Plouzané, France). The samples were combusted in the elemental analyser to separate CO2 and N2. A reference gas set was used to determine isotopic ratios by comparison. The isotopic ratios are expressed in the conventional δ notations as parts per thousand (‰) deviations from the international standards:

δ13C or δ15N (‰) = \[\frac{R_{sample}/R_{standard} - 1}{} \times 1000\]

where R is the ratio of 13C/12C or 15N/14N.

2.5. Data analyses

2.5.1. Overall δ13C and δ15N signatures

Shapiro-Wilk and Bartlett tests were computed to test for assumptions of normality and homogeneity of variances in R (version 3.5.1). Links between δ13C and δ15N values and the foodweb components (POM-Surf, POM-Fmax, zooplankton, gelatinous organisms, crustaceans, squid and fish), were investigated using Kruskal-Wallis (KW) tests and pairwise comparisons because the data did not follow normal distributions. Kruskal-Wallis tests and pairwise comparisons were also computed to investigate whether there was a significant difference in δ13C and δ15N values for each foodweb component between La Pérouse and MAD-Ridge. To assess the association between δ13C and δ15N values, Spearman rank correlation coefficients were calculated with all foodweb components at each seamount. Wilcoxon rank sum tests investigated the effect of time (day or night) on δ13C and δ15N values of gelatinous plankton and micronekton at MAD-Ridge only (because a single daylight trawl was conducted at La Pérouse and too few species were caught). To test for the effect of trawl position with respect to the seamounts on δ13C and δ15N values of omnivorous/carnivorous fish, Wilcoxon Rank sum tests and KW tests were performed on the La Pérouse and MAD-Ridge datasets, respectively.

2.5.2. Layman community-wide metrics

The Layman community-wide metrics SEAc and the δ13C and δ15N ranges (Layman et al., 2007) were calculated using the SIBER package (version 2.1.4, Jackson et al., 2011). The SEAc (sample-size-corrected standard ellipse area) describes the overall extent of the isotopic niches. The SEAc is robust for sample sizes >10 (Daly et al., 2013), which is the case for all the broad categories within this study. The SEAc of each foodweb component was described in terms of the space occupied by the group on a δ13C-δ15N plot based on all the individuals sampled within the group. The δ13C and δ15N ranges were used to describe and compare the overall extents of the foodwebs at the La Pérouse and MAD-Ridge sites. Increased δ13C range would be expected in foodwebs with multiple basal sources with varying δ13C values suggesting niche diversification at the base of the foodweb, whereas the δ15N range describes the sampled food chain lengths (Portail et al., 2016).

2.5.3. Trophic level estimations

Different models have been applied across several studies to estimate the trophic level of organisms: additive model with a fixed enrichment factor, additive enrichment model with a variable isotopic enrichment or scaled model with decreasing isotopic enrichment factors (Minagawa and Wada, 1984; Post, 2002; Gauf et al., 2009; Hussey et al., 2014). Ménard et al. (2014) and Annasawmy et al. (2018) used a fixed enrichment factor of 3.2% to estimate trophic levels of foodweb components POM, zooplankton, gelatinous plankton and micronekton collected in the SWIO. In this study, two alternative trophic enrichment assumptions were compared to estimate the trophic level of all the measured individuals within the groups (zooplankton, gelatinous organisms, crustaceans, squid and fish) at La Pérouse and MAD-Ridge.

The TPA model (additive model with constant isotopic enrichment) was proposed by Minagawa and Wada (1984) and Post (2002) with the reference level set at a trophic level of 2 for the primary consumer and a fixed and additive enrichment factor of 3.2‰:

\[
\text{Trophic level, TPA} = 2.0 + \frac{\delta^{15}N_{\text{primary consumer}} - \delta^{15}N}{3.2}
\]

where, δ15N the nitrogen isotopic composition of any given micro- nekton taxon i, δ15Nprimary consumer the δ15N reference baseline value at trophic level 2, and 3.2‰ is an estimate of the trophic enrichment factor between consumers and their primary prey (Michener and Kaufman, 2007; Vanderklift and Ponsard, 2003). The δ15N values of POM, primary consumers and zooplankton have been used in trophic level calculations as isotopic baseline (e.g. Lorrain et al., 2015). Primary consumers are generally used as baseline to reduce errors in estimations (Martínez Del Río et al., 2009). Salps are known filter feeders which have been used as baseline in previous studies in the region (Ménard et al., 2014). At La Pérouse, the mean δ15N values of six pyrosomes and one salp specimen was estimated at 5.31 ± 0.31‰ and was used as δ15Nprimary consumer to estimate the trophic position of all upper trophic level individuals that were collected. At MAD-Ridge, the mean δ15N values of six salps was 4.22 ± 0.01‰ and was used as δ15Nprimary consumer to estimate the trophic position of all individuals sampled.

The second model, TPC, is an additive trophic enrichment model...
with variable isotopic enrichment, estimated from a meta-analysis study on fish muscle (Caut et al., 2009):

\[\text{TEF} = -0.281 \delta^{15}N_{\text{primary consumer}} + 5.879, \]

where TEF is the trophic enrichment factor.

\[\text{TPC} = 2.0 + \left| \left(\delta^{13}N - \delta^{15}N_{\text{primary consumer}} \right) / \text{TEF} \right| \quad \text{Eq. 2} \]

2.5.4. Micronekton habitat ranges and feeding mode

Information on habitat ranges of selected micronekton individuals was obtained from the literature (Clarke and Lu, 1975; Pearcy et al., 1977; Smith and Heenstra, 1986; van der Spoel and Bleeker, 1991; Brodeur and Yamamura, 2005; Davison et al., 2015; Romero-Romero et al., 2019). Organisms were classified as being epipelagic (<200 m), mesopelagic (from 200 to 1000 m), bathypelagic (below 1000 m to ~100 m from the seafloor) and benthopelagic (living near the bottom) according to the definitions of the vertical zonation of the pelagic ocean from Del Giorgio and Duarte (2002) and Sutton (2013). The feeding modes of gelatinous plankton and selected micronekton were obtained from the literature and are summarised in Supplementary Material, Table S2. Organisms were classified into the four trophic groups filter-feeders (salps and pyrosomes), detritivores (leptocephali), omnivores (mainly crustaceans and the fish species Ceratosciopelus warmingii) and carnivores (most mesopelagic fish and squid). Crustaceans were classified as omnivores because they prey on zooplankton, such as euphausiids and copepods and are also known for occasional herbivory (Hopkins et al., 1994; Birkley and Gulliksen, 2003; Mauchline, 1959; Foxton and Roe, 1974). Most mesopelagic fish were classified as carnivores because they were reported to be zooplankton feeders, preying on copepods, amphipods, euphausiids and ostracods (Dalpadado and Gjøsæter, 1988; Pakhomov et al., 1996; Tanaka et al., 2007; Hudson et al., 2014; Bernal et al., 2015; Carmo et al., 2015; Young et al., 2015), with no herbivorous feeding strategy except C. warmingii, which has developed an adaptive response to competition in low-productive environments (Robison, 1984). For species with unknown diets, the feeding mode was determined based on the feeding habit identified from species within the same genus.

In order to give an overview of the foodwebs at the La Péruse and MAD-Ridge seamounts, hierarchical cluster analyses (average grouping methods) were carried out on resemblance matrices (calculated using Euclidean distances of normalised δ13C and δ15N values per gelatinous plankton and micronekton species at each seamount and for all sampled stations in PRIMER v6 software according to Clarke and Warwick (2001). Further cluster analyses were performed on log-transformed δ13C values and normalised δ13C and δ15N values of micronekton (excluding the outliers salps, pyrosomes, Funchalina sp. and leptocephali) for each seamount.

2.5.5. Effect of size on δ15N values of micronekton

The size distributions of all gelatinous and micronekton organisms captured during the La Péruse and MAD-Ridge cruises were heavily right-skewed with organisms being <100 mm in length due to net catchability and selectivity. To test for the effect of size on δ15N values, gelatinous and micronekton organisms <100 mm were considered and linear regressions were computed. Linear models were developed to investigate the effect of body lengths on δ13C and δ15N values of gelatinous and micronekton individuals and to investigate the difference in δ15N values with respect to size between La Péruse and MAD-Ridge. Additionally, eight micronekton specimens were selected according to their common occurrence at both seamounts, relatively large sample sizes and wide body length ranges, and their δ15N values were compared between the two seamounts. Information on the migration patterns of these eight taxa was obtained from the literature (Utrecht et al., 1987; Butler et al., 2001; Feunteun et al., 2015; Romero-Romero et al., 2019). Linear regressions were fitted to δ15N values of these eight taxa according to their body lengths and the seamount factor (whether δ15N values were significantly different between La Péruse and MAD-Ridge). To investigate if the seamount has an effect on the size and related diet of fish, δ15N values of selected omnivorous/carnivorous fish species collected on the summits, flanks, vicinity of the seamounts and the southern Mozambique Channel, were examined using linear models.

3. Results

3.1. Prevailing environmental conditions at the La Péruse and MAD-Ridge seamounts

Sea surface chlorophyll concentrations followed the same seasonal pattern in both regions of the La Péruse and MAD-Ridge seamounts, although concentrations were twice as high at MAD-Ridge (0.10–0.22 mg m–3) than at La Péruse (0.04–0.13 mg m–3) all year round (Fig. 2). A peak in productivity was observed in July in both the IBSG and EAFR provinces because of intense mixing caused by austral trade winds. Both the La Péruse and MAD-Ridge cruises took place during a declining phase of oceanic productivity in the region.

3.2. General foodweb structure

The description of the foodweb structure included POM collected at the surface (POM-Surf) and at the depth of maximum fluorescence (POM-Fmax), zooplankton at both seamounts, two taxonomic groups of gelatinous organisms (salps and pyrosomes), and 42 and 49 taxonomic groups of micronekton, representing 145 and 180 individuals at La Péruse and MAD-Ridge, respectively. At both La Péruse and MAD-Ridge, the foodweb components were segregated in their δ13C (La Péruse: KW, H = 170.5, p < 0.05; MAD-Ridge: KW, H = 268.1, p < 0.05) and δ15N values (La Péruse: KW, H = 153.1, p < 0.05; MAD-Ridge: KW, H = 127.4, p < 0.05) (Fig. 3). POM-Surf and POM-Fmax did not differ significantly in their δ13C and δ15N values at both seamounts (p > 0.05). At La Péruse, gelatinous organisms exhibited higher δ13C values compared with POM-Surf and POM-Fmax (p < 0.05), and they exhibited lower δ15N values than crustaceans, fish and squid at both seamounts (p < 0.05). Crustaceans, fish and squid did not differ significantly in their δ15N values (p > 0.05), but they differed in their δ13C values at La Péruse (p < 0.05). Crustaceans did not differ significantly from squid in their δ13C values (p > 0.05), whereas all other categories differed in their δ13C values at MAD-Ridge (p < 0.05). Squid did not differ significantly from crustaceans and fish in their δ15N values (p > 0.05), but 15N was more depleted in crustaceans relative to fish at MAD-Ridge (p < 0.05). At La Péruse (all depths combined), POM, zooplankton and micronekton covered a large δ13C range of ~11% (~17.2 to ~28.0‰), with POM-Fmax and the unidentified cardine crustacean representing the lowest and highest values, respectively. The δ15N values of all micronekton individuals ranged from 2.5‰ (fish: leptocephali) to 13.3‰ (fish: Coccorella atrata). At MAD-Ridge (all depths combined), POM, zooplankton and micronekton also covered a large δ13C range of ~10% (~17.1 to ~27.2‰), with POM-Surf and the fish species Chauliodus sloani representing the lowest and highest values, respectively.

Standard ellipse corrected areas (SEAc) refer to the trophic niche widths of the broad categories at La Péruse and MAD-Ridge. At La Péruse, POM-Surf and POM-Fmax showed overlapping standard ellipses with the largest SEAc (3.2 and 3.8‰2, respectively) among all components of the foodweb (Fig. 3). Gelatinous organisms showed the smallest SEAc, of 0.92‰2. Crustaceans, squid and fish had overlapping standard ellipses with SEAc values of 2.3, 1.2 and 2.9‰2, respectively (Fig. 3). At MAD-Ridge, POM-Surf and POM-Fmax also exhibited overlapping standard ellipses (SEAc = 4.8 and 2.0‰2, respectively), but with greater variability in POM-Surf δ15N values. Crustaceans, squid and fish
had overlapping standard ellipses with SEA, of 3.0, 3.6 and 3.2‰, respectively.

The 13C and 15N values of the foodweb components POM-Surf, POM-Fmax, zooplankton, gelatinous organisms, crustaceans, squid and fish were significantly different between La Pérouse and MAD-Ridge (13C: KW, H = 474.4, df = 13, p < 0.05; 15N: KW, H = 311.3, df = 13, p < 0.05, Fig. 4). Pairwise comparisons showed 13C values of POM-Surf, zooplankton and fish to differ significantly between La Pérouse and MAD-Ridge (p < 0.05 each). The median 13C and 15N values of lower trophic level foodweb components: POM-Surf, POM-Fmax and zooplankton were greater at MAD-Ridge (13C: 23.1, 24.1, 22.4, 21.1, respectively) than at La Pérouse (13C: 23.7, 24.1, 22.1‰; 15N: 5.5, 4.9 and 7.5‰, respectively) (Fig. 4).

Gelatinous organisms, crustaceans and fish displayed higher median 13C values at La Pérouse (−21.5, −18.4 and −18.7‰, respectively) than at MAD-Ridge (−22.4, −18.6 and −19.1‰, respectively) (Fig. 4). Gelatinous organisms, crustaceans, squid and fish also exhibited higher median 15N values at La Pérouse (5.2, 9.8, 10.7 and 10.4‰, respectively) than at MAD-Ridge (3.7, 8.8, 9.5 and 10.0‰, respectively) (Fig. 4), but differences were not statistically significant (p > 0.05 each). The 13C values of crustaceans, squid and mesopelagic fish encompassed the same narrow range at La Pérouse and MAD-Ridge (−17.2 to −21.0‰ and −17.1 to −21.1‰, respectively). Gelatinous salps and pyrosomes exhibited 13C values of −18.2 to −21.7‰ at La Pérouse and −19.0 to −23.5‰ at MAD-Ridge.

3.3. Relationships between 13C and 15N values

Ascending the foodweb, from POM-Surf to mesopelagic fish at La Pérouse and MAD-Ridge seamounts, there was a general increase in 13C and 15N values (Figs. 3 and 4). There was a significantly positive correlation between 13C and 15N values of all sampled components of the foodweb at La Pérouse and MAD-Ridge seamount stations (p < 0.05), with Spearman correlation coefficients of r = 0.74 and r = 0.51, respectively.

3.4. Trophic levels at La Pérouse and MAD-Ridge seamounts

Albeit small differences in trophic positions between the TPA and TPC methods, they both identified the same organisms at the lowest (leptocephali and gelatinous organisms) and highest (mesopelagic fish excluding leptocephali, and squid) trophic positions. For comparison with other studies published in the region (Menard et al., 2014; Annasawmy et al., 2018), the additive trophic enrichment model with fixed enrichment factor, TPA, (Eq. (1)), is explored in further details.

Leptocephali showed estimated TL values (from Eq. (1)) of 1.9 and 1.8 at both La Pérouse and MAD-Ridge, respectively (Fig. 5). TL values of crustaceans fell between 2.7 (La Pérouse and MAD-Ridge: Funchallia sp.) and 3.7 (La Pérouse: Sergestidae; MAD-Ridge: Oplophoridae). Squid had TL values of 3.6 (Abraliopsis sp.) and 4.0 (Histioteuthis spp.) at La Pérouse. At MAD-Ridge seamount, smaller-sized nektonic squid (26–111 mm dorsal mantle length, DML) displayed TL values of 3.2 (Enoploteuthidae) and 3.6 (Abraliopsis sp.), and larger-sized nektonic squid (365–367 mm DML) had TL values of 4.0 (Histioteuthis spp.) and 4.8 (O. bartramii). TL values of fish (excluding leptocephali) fell between 3.2 (C. warmingii) and 4.5 (C. atrata) at La Pérouse and between 2.6 (Decapterus macarellus) and 4.4 (Stomias longibarbatus) at MAD-Ridge (Fig. 5). Overall, the TL values of the micronekton broad categories displayed the same range of TL values at both seamounts.
3.5. Effect of feeding mode of gelatinous plankton and micronekton on stable isotope values

The trophic groups identified by cluster analyses are in general agreement with the postulated feeding habits of the group members at both La Pérouse and MAD-Ridge seamounts, although significant differences exist when individual species are considered. The cluster analyses based on $\delta^{13}C$ and $\delta^{15}N$ values identified two main groups, designated I and II, and two subgroups within group I and group II at La Pérouse and MAD-Ridge (Fig. 6). At La Pérouse, Group I included the filter-feeding pyrosomes (IA) and the detritivorous leptocephali (IB) that showed similar $\delta^{13}C$ values (-21.5 ± 0.2 and $-20.4 \pm 0.5\%_o$, respectively) and $\delta^{15}N$ values (5.2 ± 0.2 and $4.9 \pm 2.1\%_o$, respectively). Group IIa compared a single salp specimen ($\delta^{13}C: -18.2\%_o$ and $\delta^{15}N: 5.9\%_o$) and an omnivorous crustacean *Funchalia* sp. with similar $\delta^{13}C$ and $\delta^{15}N$ values (-18.7 ± 0.6 and $7.5 \pm 0.5\%_o$, respectively). All other crustaceans having an omnivorous feeding mode displayed greater $\delta^{15}N$ values ($10.0 \pm 1.1\%_o$) and were thus segregated within subgroup IIb along with carnivorous mesopelagic fish and squid (Fig. 6). All values are given in mean ± S.D.

At MAD-Ridge, Group I included filter-feeding pyrosomes (IA) and salps, and detritivorous leptocephali (IB) which exhibited the most depleted $\delta^{13}C$ and $\delta^{15}N$ values relative to omnivorous and carnivorous micronekton (Fig. 6). Group II was subdivided into Group IIa and included the squid *O. bartramii*, the fish *Promethichthys prometheus* and *S. longibarbatus*, all three having carnivorous feeding modes with similar $\delta^{13}C$ values and the highest $\delta^{15}N$ values for the greatest sizes. The single large squid *Histiothethys* spp. (DML: 367 mm) showed a high $\delta^{15}N$ value of 10.7\%_o and a more depleted $\delta^{13}C$ value of $-21.0\%_o$ compared with *O. bartramii*, *P. prometheus* and *S. longibarbatus*. This squid was hence segregated from subgroup IIA. All other carnivorous and omnivorous organisms exhibited lower $\delta^{15}N$ values (Fig. 6) and were thus included within subgroup IIb. Cluster analyses run on $\delta^{13}C$ and $\delta^{15}N$ values of micronekton and excluding the outliers salps, pyrosomes, *Funchalia* sp. and leptocephali, also segregated individuals according to their feeding mode at MAD-Ridge (p < 0.05).

3.6. Effect of size of micronekton on $\delta^{15}N$ values

The $\delta^{15}N$ values of individuals were significantly influenced by their sizes at both La Pérouse (F$_1, 113 = 6.70$, p < 0.05) and MAD-Ridge (F$_1, 160 = 23.3$, p < 0.05), with increasing $\delta^{15}N$ values as the size of the organisms increased (La Pérouse: $\delta^{15}N_{\text{gelatinous and micronekton <100 mm}} = 8.83 + 0.02 \times \text{Size};$ MAD-Ridge: $\delta^{15}N_{\text{gelatinous and micronekton <100 mm}} = 7.33 + 0.03 \times \text{Size}$). Eight micronekton species were further selected according to sample size, their common occurrence at both seamounts, their wide body length ranges, differing feeding modes and vertical migration patterns. The $\delta^{15}N$ values of the selected species *Sigmapus elongatus* (carnivore; diel vertical migrator) and *C. sloani* (omnivore; diel vertical migrator) were significantly influenced by their lengths (Fig. 7a and b, Table 1), with higher $\delta^{15}N$ values at La Pérouse than at MAD-Ridge. The $\delta^{15}N$ values of the fish *A. aculeatus* (carnivore, mid-water migrant) and of the crustacean *Funchalia* sp. (omnivore, diel vertical migrator) were significantly influenced by their lengths but were not significantly different between La Pérouse and MAD-Ridge (Fig. 7c and d, Table 1). The mesopelagic fish *Diaphus suborbitalis* and the squid *Abraliopsis* sp. (both carnivores and diel vertical migrants) exhibited the same range of $\delta^{15}N$ values irrespective of size at La Pérouse and MAD-Ridge (Fig. 7e and f, Table 1). For the same body length, *Abraliopsis* sp. showed higher $\delta^{15}N$ values at La Pérouse relative to MAD-Ridge (Fig. 7f). Models fitted to *C. sloani* (carnivore, diel vertical migrator) and leptocephali (detritivore, migrant or non-migrant depending on species) were not significant (Fig. 7g and h, Table 1). The detritivorous leptocephali had varied $\delta^{15}N$ values irrespective of size and irrespective of the sampling location.

The $\delta^{15}N$ values of omnivorous/carnivorous fish collected in the vicinity of the La Pérouse and MAD-Ridge seamounts and in the southern Mozambique Channel were significantly influenced by individual body size (F$_3, 171 = 10.3$, Adjusted $R^2 = 13.8$, p < 0.05) (Fig. 8a). However, there were no significant influence of body size on the $\delta^{15}N$ values of seamount flank- and summit-associated fish species *D. suborbitalis* (La Pérouse and MAD-Ridge), *Benthosema fibulatum*, *Diaphus knappi* and *Cookiokella japonica* (F$_1, 10 = 0.07$, p > 0.05) at MAD-Ridge. These seamount flank- and summit-associated fish species (Annasawmy et al., 2019; Cherel et al., 2020) exhibited minimum and maximum $\delta^{15}N$ values of 9.8\%_o (*B. fibulatum*) and 11.2\%_o (D. suborbitalis) for individuals ranging in size from 38 mm (D. suborbitalis) to 328 mm (*C. japonica*) (Fig. 8b). Despite the differing sizes of these seamount flank- and summit-associated fish species, they exhibited an estimated TL value (TPA model) of 7-4 at both La Pérouse and MAD-Ridge pinnacles.

3.7. Effect of time of day on $\delta^{13}C$ and $\delta^{15}N$ values at MAD-Ridge seamount

Gelatinous and micronekton organisms sampled at MAD-Ridge...
Fig. 6. Hierarchical clustering (Euclidean distance of normalised data subjected to averaged grouping) of $\delta^{13}C$ and $\delta^{15}N$ values (%) of sampled gelatinous organisms, crustaceans, squid and mesopelagic fish at La Pérouse and MAD-Ridge. Roman numerals at the tree branches identify groups of species belonging to the different trophic guilds: group I – filter-feeders and detritivores; group II- omnivores and carnivores; subgroup IIA: filter-feeders at La Pérouse and MAD-Ridge; subgroup IIB: detritivores at both seamounts; subgroup IIA: filter-feeders and omnivorous crustaceans at La Pérouse, and squid highest trophic level mesopelagic fish at MAD-Ridge; subgroups IIB: omnivorous and carnivorous micronekton at La Pérouse and MAD-Ridge.

3.8. Seamount effect on $\delta^{13}C$ and $\delta^{15}N$ values of omnivorous/carnivorous fish

The $\delta^{13}C$ and $\delta^{15}N$ values of omnivorous/carnivorous fish had overlapping ranges at La Pérouse flank and vicinity stations as well as overlapping ranges at MAD-Ridge flank, summit and vicinity and Mozambique Channel stations (Fig. 9). There were no significant differences in $\delta^{13}C$ ($W = 1619, p > 0.05$) of omnivorous/carnivorous fish collected between flank stations and the vicinity of La Pérouse seamount, whereas a significant difference was observed for $\delta^{15}N$ values between flank (median: 10.1%) and vicinity (median: 10.8%) stations ($W = 1876, p < 0.05$). There was also no significant difference in $\delta^{13}C$ values ($KW, H = 8.5, df = 3, p > 0.05$) of omnivorous/carnivorous fish collected in the southern Mozambique Channel, the vicinity, flank and summit of MAD-Ridge. However, there was a significant difference in $\delta^{15}N$ values ($KW, H = 8.5, df = 3, p > 0.05$) of omnivorous/carnivorous fish collected from the southern Mozambique Channel (median: 10.6%) and in the vicinity of MAD-Ridge (median: 10.0%).

4. Discussion

To our knowledge, this study is the first to investigate trophic interactions of mesopelagic communities at La Pérouse and MAD-Ridge seamounts using $\delta^{13}C$ and $\delta^{15}N$ stable isotopes. The foodweb components POM-Surf, POM-Fmax, zooplankton, gelatinous organisms and 42 and 49 taxonomic groups of micronekton were identified at La Pérouse and MAD-Ridge, respectively. Despite the low sample sizes for some species, our datasets provide a first overview of the trophic relationships of micronekton at both seamounts.

4.1. Sampling bias and constraints

The full suite of foodweb components could not be sampled at both seamounts because of trawl gear catchability, selectivity and net avoidance of some species of squid and larger fish. Stable isotopes also have numerous limitations in the extent to which they can be used to elucidate complex foodweb dynamics. Isotopic baselines vary seasonally and spatially (Ménard et al., 2014), and organisms or tissues within a single individual may incorporate the isotopic signal of their diets at varying rates, thereby influencing the stable isotope values of individuals (Martínez Del Río et al., 2009). The use of pelagic tunacites as isotopic baseline in TL calculations can also be problematic because pelagic tunacites may be members of an alternate microbial foodweb (Pakhomov et al., 2019). Furthermore, the $\delta^{15}N$ values of gelatinous plankton and micronekton were significantly different between day and night samples at MAD-Ridge. This was probably due to the sampling depth, because night-time samples were collected in the shallow, intermediate and deep layers, whereas daylight samples were collected mostly in the deep layer (apart from two leptocephali collected in the shallow depth category). Previous studies found higher $\delta^{15}N$ and $\delta^{13}C$ values with depth, which have been linked to the increase of $\delta^{15}N$ in POM with depth (Kolodinski et al., 2012; Fanelli et al., 2013). However, as the IYGPT net had no closing device, the effect of sampling depth on $\delta^{13}C$ and $\delta^{15}N$ values of individuals could not be investigated further.

Recent studies have cautioned against the use of a fixed additive nitrogen enrichment factor of ~3.2–3.4% that is commonly used to estimate the trophic position of an organism relative to its diet. Caut et al. (2009) showed that the consumer trophic account and consumer tissue significantly affect the discrimination factor used in trophic level calculations, and Hussey et al. (2014) stressed that the enrichment between consumers and their primary prey items becomes narrower in the upper parts of a food chain. Bastos et al. (2017) developed a novel method using food-specific trophic discrimination factors to estimate trophic positions of omnivorous fish given that plant-based and animal-based materials in diets are not assimilated in the same manner. Olivar et al. (2019) observed small variations in trophic level calculations of mesopelagic fish when using alternative models to estimate trophic positions. However, those authors also concluded that the important differences among species are retained by all trophic models, similarly to the findings of this study.

4.2. Trophic interactions at La Pérouse and MAD-Ridge seamounts

Particulate organic matter collected at the surface generally consists of phytoplankton, bacteria, faecal pellets and detritus (Riley, 1971; Saino and Hattori, 1987; Fabiano et al., 1993; Dong et al., 2010; Lienart et al., 2017). The $\delta^{13}C$ values of POM (collected at the surface) were different at the La Pérouse and MAD-Ridge seamounts. $\delta^{13}C$ baselines can be affected by various processes such as latitude, nutrient source, depth, ocean mixing and primary productivity (Fry, 2006). Research has
found that chlorophyll a concentrations explained the variability in POM δ^{13}C values within the EAFR province but not in the ISSG (Anna- sawmy et al., 2018). Surface chlorophyll a concentrations at MAD-Ridge (within the EAFR province) was greater than at La Pérouse (within the ISSG) all year round (Annaasawmy et al., 2019), likely a result of terrestrial input of nutrients from the Madagascar landmass, upwelling events on the shelf to the south of Madagascar (Ramanantsoa et al., 2018), offshore advection of this shelf productivity through cross-shelf transport (Noyon et al., 2018) and vertical mixing in the mesoscale eddy system over MAD-Ridge (De Ruijter et al., 2004; Vianello et al., 2020). High levels of photosynthetic rate (currently occurring at the south Madagascar upwelling and being transported south), would induce higher δ^{13}C POM values at MAD-Ridge compared with the oligotrophic La Pérouse (Fry, 1996; Savoye et al., 2003). Surface POM at MAD-Ridge might have possibly been both of marine and terrestrial origin, yielding higher δ^{13}C values relative to surface POM at La Pérouse, which might have consisted of phytoplankton with no terrestrial POM input.

Fig. 7. δ^{15}N values (‰) of (a) fish: Sigmaps elongatus, (b) fish: Ceratoscopelus warmingii, (c) fish: Argyropelecus aculeatus, (d) crustacean: Funchalia sp., (e) fish: Diaphus suborbitalis, (f) squid: Abraliopsis sp., (g) fish: Chauidus sloani, (h) fish: leptocephali, plotted against size in mm (standard length for (a)-(c), (e), (g)-(h); abdomen and carapace length for (d); dorsal mantle length for (f)) at La Pérouse (squares) and MAD-Ridge (stars). Simple linear regressions for δ^{15}N values versus size are plotted for (a)-(d).
The δ13C-δ15N correlations of all foodweb components were not relatively strong at the La Péruse and MAD-Ridge seamounts (r = 0.74 and 0.51 respectively) at the times of the cruises. A strong correlation during periods of high productivity would have supported the hypothesis of a unique and isotopically homogeneous pelagic food source (Fanelli et al., 2013; Papio et al., 2013; Preciado et al., 2017), i.e. a single source of carbon for plankton (Fanelli et al., 2009). The relatively weaker correlation observed in our study suggests a wide array of sources of production sustaining the different assemblages whereas the main input from surface production has decreased (Fanelli et al., 2011a, b; Papio et al., 2013), or exploitation of organic matter at different stages of degradation from fresh phytodetritus to highly recycled (Fanelli et al., 2009), or refractory materials such as chitin from copepod exoskeleton becoming abundant in sinking marine snow or inorganic carbonates (Polunin et al., 2001). This would be the case in low productive environments such as the ISSG, where production at La Péruse would be reduced in September (Annasawmy et al., 2019) and thus zooplankton would have to expand their food spectrum, as demonstrated by the larger span of their niche widths over the δ13C range. Alternatively, the δ13C-δ15N correlations could reflect temporal variations in the baseline isotope values coupled with varying rates of isotopic incorporation (Fanelli et al., 2009, 2011b, 2013). Higher trophic level organisms such as large crustaceans and fish reportedly do not show seasonal patterns in their isotope values owing to their much slower tissue turnover rates (Polunin et al., 2001). Additional seasonal studies are required to investigate POM and resulting zooplankton δ13C and δ15N signatures in July when surface oceanic phytoplankton production is enhanced within the ISSG and EAFR provinces (Annasawmy et al., 2018, 2019).

Among the mesopelagic organisms sampled, gelatinous plankton exhibited the lowest trophic level (~2), crustaceans showed an intermediate trophic level (~3), and smaller squid and mesopelagic fish exhibited TL values between 3 and 4, as estimated from the TPA method. The large nektonic squid, O. bartrami, exhibited a TL of ~5 at MAD-Ridge. Assuming a fixed and additive trophic fractionation of 3.2% (for comparison with other SWIO studies), the overall range of δ15N values implied a two-step (3 trophic levels) and three-step (4 trophic levels) pelagic food chain at La Péruse and MAD-Ridge seamounts, respectively. Unfortunately, no top predators were sampled during these cruises to provide information on higher trophic level organisms. Earlier studies within the EAFR province, showed swordfish Xiphias gladius collected off the coast of Madagascar to have a TL of ~4.7 (δ15N: 14.0 ± 0.59%). Specimens collected within the ISSG province had a TL of ~5.2 (δ15N: 15.1 ± 0.36%) (Annasawmy et al., 2018). Several authors described the number of trophic levels averaging between four and six in marine ecosystems, from primary consumers to top predators, and appearing higher in coastal environments, reefs and shelves and lower in oceanic upwelling systems (Arreguin-Sánchez et al., 1993; Browder, 1993; Christensen and Pauly, 1993; Bulman et al., 2002). Similar to those studies, it seems that both La Péruse and MAD-Ridge seamounts exhibit trophic levels typical of oceanic systems, although small variations may exist in the δ13C and δ15N values of an organism’s tissues according to various environmental, behavioural and physiological factors (Ménard et al., 2014; Annasawmy et al., 2018).

4.3. Influence of feeding mode and size on δ13C and δ15N values

The trophic guilds established at La Péruse and MAD-Ridge seamounts were segregated in terms of δ13C and δ15N values, from depleted (detritivores and filter-feeders) to enriched (omnivores and carnivores) isotope values, highlighting the fact that these trophic guilds consist of species that exploit distinct classes of resources (Bulman et al., 2002; Papio et al., 2013; Choy et al., 2016). The large range of δ13C values (~17 to ~23%) when gelatinous organisms are considered together with crustaceans, squid and mesopelagic fish suggests that these organisms exploit different sources of production, thus giving rise to different trophic pathways (Ménard et al., 2014). Gelatinous filter feeders such as salps and pyrosomes ingest a variety of suspended particles (Harbou, 2009; Conley, 2017) and leptopelagic include a wide range of species feeding on detrital material (Otake et al., 1993) such as larvacean houses and faecal pellets (Lecomte-Finiger et al., 2004; Feunteun et al., 2015) and hence exhibited depleted δ13C values relative to other micronekton broad categories. Species depleted in δ13C reportedly feed near the base of the food chain and are closely associated with plankton relative to fish with higher δ13C values (Polunin et al., 2001).

Crustacean taxa were at intermediate trophic levels at both seamounts, below that of strict carnivores and above that of detritivores or filter-feeding organisms. Some species of crustaceans would prey on chaetognaths (Helferian and Hopkins, 1981), molluscs, olive-green debris containing phytoplankton and protists (Hopkins et al., 1994), and they would share common food sources with mesopelagic fish by foraging on copepods, decapods and euphausiids (Fanelli et al., 2009). Similar to previous studies conducted in the SWIO (Ménard et al., 2014; Annasawmy et al., 2018), crustaceans exhibited overlapping isotopic
The narrow range of niches with carnivorous mesopelagic fish and squid at both seamounts.

There are several hypotheses for similar isotopic signatures of higher trophic levels when baseline levels differ. First, the sampled organisms might not have had time to incorporate the isotopic composition of their most recent diets, especially if transient productivity bouts had impacted the density or composition of their diet. Whereas some studies reported tissue turnover rates of ~0.1–0.2% per day in deep-sea fish (Hesslein et al., 1993), other studies showed a lack of tissue turnover information in more specific mesopelagic families including Myctophidae and Stomidae (Choy et al., 2012). Second, the difference in the δ^{15}N values of POM and zooplankton observed at La Pérouse and MAD-Ridge, although significant, may have been too negligible to be reflected in the δ^{15}N values of higher trophic levels. Third, the number of squid and crustacean specimens analysed for stable isotopes might not be large enough to reflect the full diversity in the isotopic signatures, and hence the apparent lack of variations in δ^{15}N values for these individuals between the two seamounts. Finally, as a result of movements, zooplankton grazers and subsequent trophic levels might have fed on prey components that are not those sampled in the water column, leading to a mismatch in isotopic signatures between lower and higher trophic levels.

In this study, δ^{15}N values of micronekton were correlated to body size. This phenomenon was observed in various organisms such as phytoplankton, zooplankton, decapods and fish and across numerous studies (Sholto-Douglas et al., 1991; France et al., 1998; Waite et al., 2008; Ventura and Catalan, 2008; Hirch and Christiansen, 2010; Choy et al., 2012, 2015; Papiol et al., 2013) and is probably attributable to size-related predation. As organisms grow in size, they can feed farther up the food web on larger prey with higher δ^{15}N values (Parry, 2008; Ménard et al., 2014). For those species whose δ^{15}N values (S. elongatus, C. warnaingii andAbraliopsis sp.) were significantly influenced by size, their δ^{15}N values were greater (around 1% difference) at La Pérouse than at MAD-Ridge for the same body lengths. As suggested in Parry (2008), if the δ^{15}N values, and hence the TL of an organism, are influenced by size, then the δ^{15}N signal will also depend on baseline values and the variables that affect an organism’s size such as feeding mode, growth rate, body condition and available prey items. As δ^{15}N values of POM and zooplankton were higher at MAD-Ridge than at La Pérouse, we hypothesize that those intermediate TLs at the oligotrophic La Pérouse seamount had a different trophic functioning, with the diet of those species being based on a larger proportion of higher TL prey than at MAD-Ridge.

Body size did not have an effect on δ^{15}N values of leptocopehi which encompass a wide range of species having a detrivorous and opportunistic feeding mode at both seamounts. Such lack of effect was also observed for C. sloani individuals ranging in size from 66 to 184 mm at
La Pérouse and from 77 to 199 mm at MAD-Ridge. These individuals are semi-migrants, caught in deep and intermediate trawls during both day and night. Individuals 45–178 mm long feed on myctophids and other fish species (Utrecht et al., 1987; Butler et al., 2001) with prey items being more than 63% of their own length (Clarke, 1982). Smaller individuals were reported to feed on euphausiids (Butler et al., 2001). Our trawls failed to capture smaller C. sloani individuals which may have had a different diet and possibly different δ15N values relative to larger individuals. There might also be a trophic plateau whereby subsequent increases in trophic position with size are not possible due to physical constraints on the organism or lack of appropriate prey of higher trophic levels, as was observed with O. bartramii specimens from the Central North Pacific (Parry, 2008).

4.4. Seamount effect on δ13C and δ15N values of fish species

Omnivorous/carnivorous fish sampled in the southern Mozambique Channel exhibited slightly enriched δ15N values relative to those sampled in the vicinity of the MAD-Ridge seamount. Productivity in the southern Mozambique Channel may be both entrained from the African landmass and locally generated within mesoscale eddies, hence leading to enhanced chlorophyll a concentration, micronekton abundances and enriched δ15N values within tissues of micronekton (Tew-Kai and Marsac, 2009; Annasawmy et al., 2018). For an increase in phytoplankton biomass to take place at the seamounts, physical processes leading to retention (e.g. Taylor columns trapping a body of water), enrichment (e.g. localised upwelling and uplift of nutrients) and concentration of productivity must co-occur (Bakun, 2006). However, as seen at La Pérouse and MAD-Ridge seamounts, the current speeds were too strong during the cruise, and the seamount structures unfavourable for Taylor column formation and for significant retention and assimilation of productivity (Annasawmy et al., 2020). This would have inhibited any subsequent energy transfer to higher trophic levels, potentially explaining the lack of differences in δ15N values between the seamount and the area not influenced by the seamount.

Seamount-associated fish species D. suborbitalis, B. filipatrum and C. japonicus (Annasawmy et al., 2019; Cherel et al., 2020), sampled at the summit and on the flanks of MAD-Ridge showed similar δ13C, δ15N and TL values irrespective of their size, similarly to D. suborbitalis sampled at La Pérouse. This most likely reflects similar food sources at the summit and flanks of both pinnacles or ingestion of different prey items having similar isotopic composition. These fish may associate with the La Pérouse and MAD-Ridge summits and flanks owing to enhanced availability of prey and/or the quiescent shelters offered by the topography (Annasawmy et al., 2019). All seamount-associated fish individuals collected on the summit and flanks of La Pérouse and MAD-Ridge with the IYGPT net were adults, previously reported to prey on copepods (Go, 1986; Vinip et al., 2018; Olivar et al., 2019) and chaetognaths (Appelbaum, 1982), organisms present in similar proportions on and away from both seamounts (Noyon et al., 2020).

Although δ13C and δ15N values may depend on a range of factors, there were few differences between δ13C and δ15N values of mesopelagic fish sampled at La Pérouse and MAD-Ridge and those collected in the Indian Ocean, within the oligotrophic ISSG province (A. aculeatus δ13C and δ15N values: −18.6 and 9.5‰, C. sloani: −18.1 and 9.5‰, and Lobianchia gemellarii: −18.5 and 9.9‰, Annasawmy et al., 2018) and the western Mozambique Channel (A. aculeatus: −18.4 and 10.0‰ and L. gemellarii: −18.4 and 11.1‰, Annasawmy et al., 2018). Even though mesopelagic fish exhibit small variations in their δ13C and δ15N values across different studies in various oceanic environments, they generally occupy trophic positions between 2 and 4, irrespective of the approach used to estimate trophic positions (Fanelli et al., 2011b; Choy et al., 2012, 2015, 2016; Colaco et al., 2013; Menard et al., 2014; Valls et al., 2014a,b; Denda et al., 2017; Annasawmy et al., 2018; Olivar et al., 2019). Despite the possible bias induced by the different time-scales in sampling (Mill et al., 2008), within a stable isotope approach, the trophic positions of mesopelagic fish across numerous studies confirmed similar dietary patterns and food sources with similar isotopic compositions. Hence, these mesopelagic fish species by their opportunistic feeding mode may play a similar trophic role across different environments (Olivar et al., 2019).

5. Concluding remarks

This study has shown that despite the different productivity at the two shallow seamounts and the significant differences in lower trophic level δ13C and δ15N values, crustaceans, smaller-sized squid and mesopelagic fish, because of their varied feeding modes, occupy trophic positions between 3 and 4. Specimen size had an influence on the δ15N values of most individuals, although that also depended on the life strategy and feeding mode of the species considered. The δ13C and δ15N values of mesopelagic organisms sampled during both cruises reflected those of typical oceanic systems and the seamounts did not seem to have any impact on the overall isotopic signatures of the mesopelagic taxa sampled. However, the few seamount-associated fish sampled showed similar δ15N values and trophic levels irrespective of their size at the summits and flanks of the pinnacles. La Pérouse and MAD-Ridge seamounts may hence be important foraging grounds for the few taxa that preferentially associate with their slopes and summits, and thus benefit from the varied habitat types that the seamounts offer compared to the open ocean environment.

Acknowledgements

We acknowledge the work carried out by the scientific/non-scientific staff on board the RV Antea for collection of samples at the La Pérouse and MAD-Ridge seamounts. We thank Hervé Demarçq (IRD, Sète, France) for providing the SSS data. We thank colleagues Sébastien Jaquemet from the Laboratoire d’écologie marine, Université de la Réunion (UMR Entropie), Bryndon Arendze-Bailey from the Molecular and Cell Biology Department (University of Cape Town, South Africa) and Dawood Hattas from the Department of Biological Sciences (UCT, South Africa) for providing the necessary equipment in the freeze-drying process. We also thank colleagues Luisa Metral at the Plateau Chicmie/Pôle Technique MARBEC (Sète, France) and Jean-Marie Munaron and Clement Tanvet at the Pôle de Spectrométrie Océan (Plouzané, France) for providing support with the stable isotope analyses. This study was mainly supported by the Flotte Oceangraphique Française (French Oceanographic Fleet) and the Institut de Recherche pour le Développement (IRD) in relation to the logistics of the RV Antea. Additional funding was also received from the Conseil Regional de la Réunion (Réunion Regional Council, Bop 123/2016) for the La Pérouse cruise, and from the Fonds Français pour l’Environnement Mondial (FFEM) as part of the FFEM-SWIO project on Areas Beyond National Jurisdiction (ABNJ) of the South West Indian Ocean for the MAD-Ridge cruise. The first author was the beneficiary of a doctoral bursary granted by the Institut de Recherche pour le Développement (IRD, France) and the ICEMASA French-South African International Laboratory.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dsr2.2020.104804.

References
