
Contents lists available at ScienceDirect

General and Comparative Endocrinology

journal homepage: www.elsevier.com/locate/ygcen

Post-natal corticosterone exposure downregulates the HPA axis through
adulthood in a common passerine

Jacquelyn K. Gracea,⁎, Charline Parenteaub, Frédéric Angelierb

a Dept. of Ecology and Conservation Biology, Texas A&M University, College Station, TX 77843, USA
b Centre d’Etudes Biologiques de Chizé, Centre National de la Recherche Scientifique-Université de la Rochelle, UMR 7372, F-79360 Villiers en Bois, France

A R T I C L E I N F O

Keywords:
Glucocorticoid
House sparrow
Early-life stress
Programming effect
Hypothalamic-pituitaryadrenal axis

A B S T R A C T

The hypothalamic–pituitaryadrenal (HPA) axis is one of the most important physiological mechanisms for
mediating life-history trade-offs by reallocating resources to immediate survival from other life-history com-
ponents during a perturbation. Early-life stressor experience and associated upregulation of glucocorticoids can
induce short- and long-term changes to the HPA axis in ways that may optimize survival and/or reproduction for
the expected adult environment. Although short-term changes to the HPA axis following perinatal stress are well
documented, we know less about the long-term effects of early-life stress especially for non-mammalian wild
species. Here, we determined long-term effects of experimental post-natal increases in a circulating gluco-
corticoid on the HPA axis in a common passerine bird, the house sparrow (Passer domesticus). We manipulated
circulating corticosterone in wild, free-living nestlings, transferred fledglings to captivity and assessed corti-
costerone response to a standardized capture-restraint protocol at the pre-fledging, juvenile, and adult stages.
Early-life corticosterone manipulation was associated with depressed baseline and stress-induced concentrations
of corticosterone at all stages of life, through adulthood. These results provide rare evidence for the effects of
early-life stressor experiences through adulthood, with important implications for understanding developmental
programming of an endocrine mediator of life history trade-offs.

1. Introduction

The environment an animal experiences during growth and ma-
turation interacts with the genotype to guide the development of the
phenotype (Monaghan, 2008). In vertebrates, it is well established that
steroid hormones can have organizational (i.e. “programming”) effects
on physiology and behavior (Arnold and Breedlove, 1985) and that the
perinatal period is a critical period in which these long-term changes
can occur (Adkins-Regan et al., 1994; Arnold and Breedlove, 1985). The
field of programming effects was historically associated mainly with so-
called “sex hormones”, but has expanded in recent decades to include
other early-life hormone exposure events, such as glucocorticoid (GC)
upregulation associated with stress (Cottrell and Seckl, 2009; Welberg
and Seckl, 2001). Understanding phenotypic effects of early-life stressor
experiences on both short- and long-term scales has broad implications
for animal husbandry, welfare, and conservation (Goerlich et al., 2012).

Early-life stressor experiences are associated with long-term
changes in neurology (Lucassen et al., 2013; Welberg and Seckl, 2001),
physiology (Cottrell and Seckl, 2009; Matthews, 2002) and behavior
(Seckl, 2004). Studies of captive rodents and birds, and at least one wild

bird demonstrate that early-life stressor experiences induce changes to
the GC stress response of juveniles and young adults (e.g., Banerjee
et al., 2012; Grace and Anderson, 2018; Kalinichev et al., 2002; Liu
et al., 2000; Marasco et al., 2012; Pravosudov and Kitaysky, 2006;
Schmidt et al., 2014; Slotten et al., 2006; Spencer et al., 2009), and
behavioral traits including neophobia, anxiety, and aggression (Boccia
and Pedersen, 2001; Durand et al., 1998; Kalinichev et al., 2002;
Spencer and Verhulst, 2007), as well as other physiological (e.g., telo-
mere attrition (Angelier et al., 2017)), behavioral (e.g., foraging be-
havior and cognitive ability (Kitaysky et al., 2003)), and life history
traits (Drummond and Ancona, 2015; Lindström, 1999) (reviewed in
Schoech et al., 2011). Following high early-life stressor experience or
GC manipulation, zebra finches (Taeniopygia guttata), western scrub jays
(Aphelocoma californica), male Nazca boobies (Sula granti), and male
laboratory rodents, among other species display a hypersensitivity of
the hypothalamic–pituitaryadrenal (HPA) axis response to stressors
(Grace and Anderson, 2018; Kalinichev et al., 2002; Pravosudov and
Kitaysky, 2006; Schoech et al., 2011; Spencer et al., 2009), but no
change in circulating baseline corticosterone (CORT, the primary avian
glucocorticoid) concentration (Grace and Anderson, 2018; Pravosudov
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and Kitaysky, 2006; Schoech et al., 2011; Spencer et al., 2009). How-
ever, opposite effects, or no effect have been found in a growing
number of studies, suggesting that results can be species- and sex-spe-
cific, and dependent on stressor intensity, type, and period of exposure
(Matthews, 2002). For example and in contrast to the above results for
males, early-life stressor experience induces no hypersensitivity and a
decrease in baseline CORT concentration ([CORT]) in female Nazca
boobies and female laboratory rats (Grace and Anderson, 2018; Slotten
et al., 2006). European starlings (Sturnus vulgaris) of both sexes display
juvenile downregulation of the GC stress response following pre-natal
GC exposure (Love and Williams, 2008a), and post-natal GC exposure is
associated with increased baseline [CORT] in a separate study of zebra
finches (Crino et al., 2014), and no change to the restraint-induced GC
stress response in song sparrows (Melospiza melodia) (Schmidt et al.,
2014). In Japanese quail (Coturnix coturnix japonica) of both sexes, pre-
natal GC elevation is associated with a shortened GC stress response in
one study (Zimmer et al., 2013), but no change to the GC stress re-
sponse in another (Marasco et al., 2012), while post-natal GC exposure
resulted in sex-specific HPA axis changes (Marasco et al., 2012). Thus,
there remains considerable lack of consensus regarding long-term ef-
fects of early stressor exposure on the GC stress response. Additionally,
while there is abundant evidence of short-term effects of early-life
stressors on the HPA axis, researchers rarely follow subjects to adult-
hood (Crino et al., 2014; Marasco et al., 2012; Pakkala et al., 2016),
especially for wild species (Drummond and Ancona, 2015; but see
Grace and Anderson, 2018; Lendvai et al., 2009; Schmidt et al., 2014),
casting doubt on the persistence of these effects.

GCs are of special interest in the field of organizational effects be-
cause of their role in determining individual fitness, both at baseline
and stress-induced levels. At baseline levels, GCs play a fundamental
role in energy allocation in response to predictable life-history events
(Crespi et al., 2013; McEwen and Wingfield, 2003). Thus, baseline GC
levels are expected to correlate with energetic demands associated with
life-history stage, circadian patterns of foraging, and seasonal activities
(reviewed in Crespi et al., 2013; McEwen and Wingfield, 2003;
Sapolsky et al., 2000). At stress-induced levels, the primary function of
the GCs are to mediate rapid behavioral and physiological responses to
perceived threats to homeostasis (Sapolsky et al., 2000), thus pro-
moting immediate survival and facilitating response to unpredictable
environmental factors (i.e., “labile perturbation factors”; Wingfield
et al., 1998). This response is flexible and can be modulated to balance
benefits to immediate survival against long-term fitness costs of ele-
vated GCs (Angelier and Wingfield, 2013; Wingfield and Sapolsky,
2003). Thus, the GC stress response is one of the most important phy-
siological mechanisms that mediates life-history trade-offs by re-
allocating resources to immediate survival from other life-history
components (Angelier et al., 2013; Crespi et al., 2013; Wingfield and
Sapolsky, 2003).

In recent years, the historically negative view of developmental
stress has shifted to focus on its potentially beneficial programming
effects (Crino and Breuner, 2015; Gluckman et al., 2007; Love and
Williams, 2008b; Monaghan, 2008). Early life stressors may be im-
portant indicators of future environmental conditions and associated
organizational effects may work to match the phenotype to this pre-
dicted future environment (“Match-Mismatch Hypothesis”), (Crino and
Breuner, 2015; Gluckman et al., 2007; Love and Williams, 2008b).
These organizational effects can include long-term modifications to
baseline GCs and the GC stress response, which may facilitate pheno-
typic matching by mediating life history tradeoffs between, for in-
stance, survival and reproduction (Bókony et al., 2009; Crespi et al.,
2013; Crino et al., 2014; Crino and Breuner, 2015), especially during
unpredictable environmental perturbations. Under this hypothesis,
adverse consequences of early-life programming occur when there is a
mistmatch between the anticipated and actual mature environments
(Gluckman et al., 2007; Nederhof and Schmidt, 2012).

Altricial birds have emerged as useful models to study the effects of

post-natal glucocorticoid exposure because they lack a physiological
link between mothers and offspring (i.e., maternal lactation) making it
easier to disentangle postnatal maternal effects and endogenous effects
in offspring, compared with mammalian studies (Spencer et al., 2009).
Many avian studies of early-life stressor experience have focused on the
effects of nutritional stress, caused either by directly manipulating food
availability, or altering within-brood competition (Goerlich et al.,
2012). This approach, however, makes it difficult to disentangle
stressor experience from the confounding effects of competitive inter-
actions, parental care, and changes in energetic resources. Here, we
investigate long-term effects of early-life glucocorticoid exposure on the
HPA axis stress response in a common bird species, the house sparrow
(Passer domesticus). We experimentally elevate circulating [CORT] in
wild, free-living house sparrow nestlings and measure baseline and
stress-induced circulating [CORT] in captivity through adulthood.
Under the Match-Mismatch hypothesis, we predict that elevated early-
life CORT exposure will result in long-term dampening of baseline and
stress-induced [CORT] to promote resource conservation, if such ex-
posure is an indicator of an unpredictable future resource conditions for
this species (Haussmann et al., 2012; Love and Williams, 2008a). Al-
ternatively, if elevated early CORT exposure is an indicator of high
future predation rates, we predict exposed birds to display elevated
baseline and stress-induced [CORT] to enhance fear and vigilance be-
haviors (Breuner, 2008; Haussmann et al., 2012). Previous work with
these same house sparrows has shown that house sparrows exposed to
elevated corticosterone at the nestling stage exhibit acute depression in
growth followed by catch up growth at the juvenile stage (Grace et al.,
2017a), poor antipredator behavior (Grace et al., 2017b), decreased
male sexual ornamentation (Dupont et al., 2019), and increased mor-
tality as adults (Grace et al., 2017a), but not whether this exposure
affects the HPA axis stress response. Here, we specifically tested whe-
ther post-natal CORT exposure may affect circulating baseline and
stress-induced CORT levels through adulthood. Because of the central
role of CORT in mediating life-history trade-offs (Wingfield and
Sapolsky 2003; Angelier and Wingfield 2013; Vitousek et al., 2018),
exploring the developmental plasticity of the HPA axis will allow us to
better understand how developmental conditions may orchestrate life-
history strategies and life-history decisions in response to unpredictable
events during various life-history stages.

2. Methods

All work was approved by the Centre National de la Recherche
Scientifique and conforms to guidelines set forth by the French Ministry
of Higher Education and Research and Ministry of Agriculture and
Fisheries.

2.1. Study population and nestling manipulation

Nestling manipulation began at eight days post-hatching, and was
conducted on free-living, wild house sparrows in the vicinity of the
rural and agricultural town of Prissé la Charrière (46°09′12″N
0°28′59″W), Deux-Sèvres, France. All nests with more than one nestling
in the study area were used and all nestlings were used in each nest
(n = 131 nestlings). On day three post-hatching nestlings were given a
plastic color band to facilitate individual identification, and on day 9
post-hatching nestlings were banded with a uniquely numbered per-
manent aluminum ring.

Corticosterone was delivered to nestlings non-invasively following
the method of Breuner et al. (1998) and used successfully in subsequent
studies (Breuner and Wingfield, 2000; Grace et al., 2017b,a; Lohmus
et al., 2006; Saldanha et al., 2000). Meal worms were chilled at −20 °C
to limit movement and were injected ventrally between exoskeletal
segments into the central abdomen with 20 µl of 0.6 mg mL−1 CORT in
dimethyl sulfoxide (DMSO), 0.9 mg mL−1 CORT in DMSO, or 20 µl of
DMSO, alone. Mealworms that leaked were discarded. CORT-fed
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nestlings received a CORT-injected worm on day 8 (0.6 mg mL−1), day
9 (twice – morning and evening; 0.6 mg mL−1), and day 11 post-
hatching (0.9 mg mL−1), while control nestlings received a DMSO-in-
jected worm on the same schedule. This schedule discouraged habi-
tuation to treatment by limiting predictability. CORT concentrations
were determined based on previous work with house sparrow nestlings
(Loiseau et al., 2008) and Gambel’s white-crowned sparrows (Zono-
trichia leucophrys) (Breuner et al., 1998; Breuner and Wingfield, 2000),
scaled to the average mass of house sparrow nestlings. This treatment
increased circulating concentrations of CORT on average 8.6-fold
within 40 min of worm ingestion for eight day old nestlings (CORT-fed:
mean [CORT] ± SE = 76.74 ± 11.44 ng/mL; Control:
8.95 ± 1.45 ng/ mL) (Grace et al., 2017b), within the biologically
relevant range for nestling house sparrows and that observed in re-
sponse to natural stressors (Angelier et al., 2016).

Treatment began in the mid-late nestling period because the HPA
axis may develop slowly in altricial species (Wada, 2008), but by eight
days of age, a related species, the white-crowned sparrow is able to
mount a strong HPA axis stress response (Wada et al., 2007). Half the
nestlings in each nest were assigned to CORT-fed and control (DMSO-
only) groups. CORT- and DMSO-injected worms were fed to nestlings
with blunt-end forceps, at their nest box. Assignment was alternated
between nestlings (e.g., CORT-fed first, control second, etc…) and as-
signment order was alternated between nests (e.g., CORT-fed first,
control second; control first, CORT-fed second).

2.2. Captive housing

At and after twelve days post-hatching, nests were checked daily
and nestlings that showed signs of flight were taken into captivity. Two
or four nestlings (equal parts control and CORT-fed) were removed
from each nest, resulting in birds from 23 nests in captivity. In three
instances only three small fledglings were in the nest, thus, we brought
all fledglings into captivity due to survival concerns (one of these died
within one of week of captive housing). Fledglings were housed in wire
bird cages (Vision S01, 45.5 × 35.5 × 51 cm) with all siblings (2–4
birds per cage) until birds reached basic plumage (i.e., adult stage),
after which pairs consisting of one CORT-fed and one control bird were
housed together. When possible these pairs were siblings, otherwise
pairs were age- and sex-matched. Fledglings were hand-fed until they
were capable of feeding on their own (mean ± s.e.m = 26.8 ± 4.8d,
max = 41d, min = 18d). Following self-feeding, birds were supplied
with mixed seeds ad libitum, vitamin and mineral soaked cat food, salt/
mineral blocks, water (changed daily), and millet on the stalk. Grit was
supplied three times per week and cages were equipped with perches of
varying heights. Birds were kept on natural daylight schedules and
caretakers were blind to treatment group.

2.3. Blood sampling and body measurements

We collected blood samples according to standardized stress-re-
sponse protocol (Wingfield et al., 1992) at the pre-fledging (12 d post-
hatching), juvenile (68–89 d post-hatching, juvenile plumage), and
adult (173–185 d post-hatching, definitive basic plumage) stages
(Table 1). Sampling was conducted between 0830 h and 1630 h, at least
two hours after sunrise and two hours before sunset, and hour of

sampling was included as a covariate in statistical analyses. We ob-
tained an initial blood sample (~75 µl) immediately after initial dis-
turbance (mean ± standard deviation = 2 min 18 s ± 44 s,
max = 4 min) with 27-gauge needles and heparinized microcapillary
tubes. Birds were then placed in cloth bags and a subsequent blood
sample (~75 µl) was collected at approximately 32 min later
(mean ± standard deviation = 31 min 59 s ± 2 min 47 s,
max = 39 min 52 s) to monitor stress-induced [CORT]. There was no
significant difference between baseline [CORT] from samples obtained
at or prior to 3 min, compared to after 3 min (t(28) =−0.49, p = 0.63)
or between stress-induced [CORT] from samples obtained prior to
35 min, compared to after 35 min (t(1 2 7) = −0.20, p = 0.84), thus
all stress-induced [CORT] measures were used in analyses. All birds
were weighed (electronic balance:± 0.1 g), and tarsus (caliper:± 0.1
mm) was measured. Tarsus length was chosen to represent body size
because it is least prone to temporary damage that could alter mea-
surements.

2.4. Corticosterone assays and molecular sexing

All laboratory analyses were performed at the Centre d’Etudes
Biologiques de Chizé (CEBC). Immediately following collection, plasma
was separated from the cellular fraction by centrifugation at 2000g for
7 min and plasma and red blood cells were preserved by freezing at
−20 °C until analysis. Total plasma [CORT] was measured by radio-
immunoassay as described in Lormée et al. (2003). Briefly, samples
were extracted in ethyl ether, followed by radioimmunoassay using a
commercial rabbit anti-serum against corticosterone-3-(O-carboxy-me-
thyl) oxime bovine serum albumin conjugate (Biogenesis, UK). Cross-
reaction was determined in a previous study to be 9% with 1-deso-
xycorticosterone and less than 0.1% with other plasma steroids (Lormée
et al., 2003). Samples were run in duplicate. The minimum detectable
[CORT] was 0.28 ng ml−1, and the intra- and inter-assay coefficients of
variation were 8.51% and 9.30% respectively.

Genomic DNA was extracted from frozen red blood cells using
DNeasy Blood and Tissue Kits (Qiagen, Cat. No. 69504), a silica-based
extraction method, according to the manufacturers protocol. Sex was
assigned following the PCR protocol of Fridolfsson and Ellegren (1999)
using two highly conserved genes (CHD) on the avian sex chromo-
somes. Sex assignment was confirmed by evaluation of sexual orna-
mentation in surviving adults. In all cases that could be confirmed by
adult plumage, genetic sex matched plumage sex.

2.5. Statistical analyses

All statistical analyses were conducted in R (version 3.0.3) and were
evaluated within a multimodel inference framework using the R
packages ‘lme4’ (Linear Mixed-Effects Models using 'Eigen' and S4) and
MuMIn (Multi-Model Inference). We ranked models using Akaike’s In-
formation Criterion corrected for small sample size (AICc) (Burnham
et al., 2010), and evaluated models first by ΔAICc (the difference in
AICc between the candidate model and the model with the lowest
AICc), followed by examination of the beta coefficients and associated
95% confidence intervals (95% CI) (Anderson, 2008; Arnold, 2010). We
report both marginal r-squared values (i.e., proportion of variance ex-
plained by fixed factors alone) and conditional r-squared values (i.e.,

Table 1
Demographic variables and mean [CORT] values for birds at the pre-fledging, juvenile, and adult life stages.

Life Stage Number of Males Number of Females Nestlings per nest Mean ± SD Baseline [CORT] Mean ± SD (ng
ml−1)

Stress-induced [CORT] Mean ± SD (ng
ml−1)

Pre-fledging 43 59 3.75 ± 1.00 9.51 ± 7.45 43.70 ± 27.78
Juvenile 29 41 3.23 ± 0.73 2.04 ± 2.26 14.63 ± 8.29
Adult 24 35 2.90 ± 0.74 1.86 ± 1.59 15.00 ± 9.00
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the proportion of variance explained by both random and fixed factors)
obtained by the delta method using the r.squaredGLMM function in R
(Johnson, 2014; Nakagawa and Schielzeth, 2013).

We analyze baseline [CORT] (i.e., initial CORT concentration) and
stress-induced [CORT] (i.e., CORT concentration 30 min after initial
sample) within a repeated measures, generalized linear model frame-
work (gamma family, log link), with nest of origin and bird ID as
random effects. Preliminary analyses suggested important effects of
hour of sampling, and two-way interactions between sample number
(i.e., baseline or stress-induced sample) and sex, sample number and
handling time, and three-way interactions between life stage (i.e., pre-
fledgling, juvenile, adult), sample number, and current body condition,
and between life stage, sample number, and mass at eight days post-
hatching (when treatment began). Thus, these predictors and interac-
tions were included in all models. We then compared models that in-
cluded treatment, and interactions between treatment and the fol-
lowing variables: life stage, sample, sex, mass at eight days post-
hatching (which could affect physiological concentration of CORT
treatment), and current body condition because these had logical po-
tential interactions with treatment (see Supplementary Information for
all models). Our largest model had 35 degrees of freedom, with a
sample size of 462, which was within general recommendations of 10
samples per degree of freedom. Body condition was the Scaled Mass
Index (Peig and Green, 2009) of each bird, calculated from mass and
tarsus length at the time of sampling, handling time was the number of
seconds from disturbance until an initial blood sample was obtained for
baseline [CORT], or the number of seconds from initial disturbance to
final blood sample for stress-induced [CORT]. All continuous predictors
were z-scored prior to analysis to prevent issues of scale.

3. Results

The top model by AICc selection (Table 2) included the fixed effects
of treatment and hour of sampling, two-way interactions between
sample number and sex, and sample number and handling time, and
three-way interactions between sample number, life stage, and mass at
8 days post-hatching, and sample number, life stage, and current body
condition (marginal r2 = 0.765, conditional r2 = 0.798; N = 462;
Table 3). Early-life CORT treatment was associated with depressed
[CORT] (t =−3.10, p = 0.002, N = 462, Table 3), with no interaction
between treatment and sample number or treatment and life stage,
indicating a consistently negative effect of treatment on baseline
(Fig. 1) and stress-induced (Fig. 2) concentrations at all life stages.
[CORT] decreased from the pre-fledging to the juvenile and adult
stages, but that decrease was greater for baseline than stress-induced
[CORT] (juvenile: t = -12.78, p < 0.001; adult: t = −13.41,
p < 0.001; sample * juvenile: t = 2.94, p = 0.003; sample * adult:
t = 3.25, p = 0.001, N = 462). Baseline [CORT] increased with mass
at eight days post-hatching at the pre-fledging stage (Mass D8: t = 3.15,
p < 0.002, N = 462, Fig. 3), but that effect disappeared by adulthood
(Mass D8 * adult: t = −2.64, p = 0.008, N = 462, Fig. 3). Baseline
[CORT] also decreased with current body condition at the pre-fledging

stage (t = −4.09, p < 0.001, N = 462), an effect that also dis-
appeared by adulthood (Body Condition * adult: t = 3.28, p = 0.001,
N = 462, Fig. 4). Finally, baseline [CORT] increased with handling
time (handling time: t = 5.55, p < 0.001, N = 462), and stress-in-
duced [CORT] was higher in females than males (sample * sex:
t = 2.33, p = 0.02, N = 462) and decreased with handling time
(sample * handling time: t = −4.86, p < 0.001, N = 462).

4. Discussion

In this study, we show that house sparrows exposed to early-life
[CORT] elevation display both short- and long-term changes to the
glucocorticoid stress response. Post-natal CORT treatment resulted in
depressed baseline and stress-induced circulating CORT concentrations

Table 2
Model evaluation parameters for models predicting corticosterone concentration that are within Δ2 of the top model, and the first model to not include a treatment
effect. Fixed model predictors are listed in the first column, followed by AIC model evaluation parameters. All models included the random effect of bird ID and nest
of origin. A * indicates an interaction (and main effects), “Δ” indicates the difference between the AICc values of the top model and the model in question, and “df” is
degrees of freedom. The smallest AICc value is 1066.32 and N = 462 for all models. “Life Stage” indicates pre-fledging, juvenile, or adult life stages; “Sample”
indicates baseline or stress-induced [CORT] sample; “Mass D8” is mass at eight days post-hatching (z-scored), when treatment began; and “Hour” is the hour in which
sampling occurred. Our top model, (i.e., the model with the lowest AICc) is highlighted in bold.

Model df Δ Log Likelihood

Treatment + Sample * Life Stage * Mass D8 + Sample * Life Stage * Body Condition + Sample * Sex + Sample * Handling Time + Hour 27 0.00 −1404.7
Treatment * Life Stage + Sample * Life Stage * Mass D8 + Sample * Life Stage * Body Condition + Sample * Sex + Sample * Handling

Time + Hour
29 0.52 −1402.6

Sample * Life Stage * Mass D8 + Sample * Life Stage * Body Condition + Sample * Sex + Sample * Handling Time + Hour 26 7.346 −1409.5

Table 3
Beta coefficients and associated standard errors, t-values, and p-values for
parameters in the top model predicting [CORT]. “Life Stage” indicates pre-
fledging, juvenile, or adult life stages; “Sample” indicates baseline or stress-
induced [CORT] sample; “Mass D8” is mass at eight days post-hatching (z-
scored), when treatment began; “Handling Time” is the time in seconds after
disturbance (z-scored); “Body Condition” is Scaled Mass Index (z-scored) cal-
culated from mass and tarsus measurements; and “Hour” is the hour in which
blood sampling occurred (z-scored). A: indicates an interaction term, and non-
reference categories are in parenthesis for fixed factors.

Predictor Beta Standard Error t-value p-value

Treatment (CORT-fed) −0.26 0.09 −3.10 0.002
Sample (stress-induced [CORT]) 1.50 0.11 13.28 <0.001
Life Stage
Juvenile −1.40 0.11 −12.78 <0.001
Adult −1.49 0.11 −13.41 <0.001

Sex (Female) −0.03 0.11 −0.27 0.790
Mass D8 0.23 0.07 3.15 0.002
Handling Time 0.26 0.05 5.55 <0.001
Body Condition −0.29 0.07 −4.09 <0.001
Hour −0.06 0.04 −1.54 0.123
Sample: Life Stage
Sample: Juvenile 0.40 0.14 2.94 0.003
Sample: Adult 0.46 0.14 3.25 0.001

Sample: Mass D8 −0.18 0.09 −1.96 0.050
Sample: Sex 0.28 0.12 2.33 0.020
Sample: Handling Time −0.31 0.06 −4.86 <0.001
Sample: Body Condition 0.22 0.09 2.51 0.012
Life Stage: Mass D8
Mass D8: Juvenile −0.17 0.10 −1.67 0.094
Mass D8: Adult −0.27 0.10 −2.64 0.008

Life Stage: Body Condition
Body Condition: Juvenile 0.02 0.11 0.15 0.881
Body Condition: Adult 0.39 0.12 3.28 0.001

Sample: Mass D8: Life Stage
Sample: Mass D8: Juvenile 0.10 0.13 0.84 0.403
Sample: Mass D8: Adult 0.26 0.13 2.03 0.042

Sample: Body Condition: Life Stage
Sample: Body Condition:
Juvenile

−0.11 0.14 −0.82 0.415

Sample: Body Condition: Adult −0.49 0.15 −3.27 0.001
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immediately following treatment and through adulthood. Post-natal
body condition also positively affected baseline corticosterone con-
centration through adulthood, indicating effects of both glucocorticoid
treatment and early-life nutritional state.

4.1. Effects of early-life mass and current body condition on the HPA axis

Nestling mass and current body condition and were found to have
important effects on baseline circulating [CORT], especially at the pre-
fledging stage. Nestling mass before treatment began positively pre-
dicted baseline [CORT] at the pre-fledging stage, independent of
treatment, but that effect disappeared by adulthood. Consistent with
these results, Lendvai et al. (2009) also found no effect of nestling mass
on baseline or stress-induced [CORT] in adult house sparrows. This
suggests that nestling mass does not have strong, long-term organizing
effects on the HPA axis in this species.

Current body condition negatively predicted baseline [CORT] at the
pre-fledging stage, consistent with some previous work in free-living
species (e.g., Kitaysky et al., 1999; Wingfield et al., 1994), although
others have found no relationship between body condition and baseline
[CORT] (e.g., Breuner and Hahn, 2003; Lormée et al., 2003). The effect
of body condition on [CORT] weakened at the juvenile stage, and by

adulthood there was a weakly positive relationship between baseline
[CORT] and body condition. This difference between the pre-fledging
and adult stages could reflect life stage associated changes in the re-
lationship between body condition and [CORT], and/or physiological
changes in body composition associated with captivity. At the (wild)
pre-fledging stage, body condition probably reflected nutritional con-
ditions, which were standardized in captivity by the adult stage. Thus,
body condition in adulthood may have reflected other aspects of health,
and/or exercise or feeding frequency instead of nutritional state.

4.2. Effects of post-natal glucocorticoids on the HPA axis

Strong post-natal stressors are known to induce changes to the HPA
axis in other captive, and some wild studies, but in contrast to our re-
sults, most studies find that the HPA axis becomes hypersensitized,
resulting in elevated stress-induced CORT secretion (Grace and
Anderson, 2018; Kalinichev et al., 2002; Pravosudov and Kitaysky,
2006; Schoech et al., 2011; Spencer et al., 2009), and typically no
change in circulating baseline [CORT] (Grace and Anderson, 2018;

Fig. 1. Effect of treatment on baseline circulating [CORT] at the (A) pre-fled-
ging (N = 103), (B) juvenile (N = 71), and (C) adult (N = 59) life stages. Note
the different y-axis scale for each life stage. Dots are means, error bars are
standard error.

Fig. 2. Effect of treatment on stress-induced circulating [CORT] at the (A) pre-
fledging (N = 103), (B) juvenile (N = 71), and (C) adult (N = 59) life stages.
The y-axis indicates [CORT] after thirty minutes of handling stress. Note the
different y-axis scale for pre-fledging birds. Dots are means, error bars are
standard error. Although the effect of treatment appears to weaken at the ju-
venile stage, our model selection indicated a consistent negative effect of
treatment across all life stages.
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Pravosudov and Kitaysky, 2006; Schoech et al., 2011; Spencer et al.,
2009). However, this trend toward hypersensitivity following early-life
stressor exposure is by no means universal. Domestic chickens (Gallus
gallus), European starlings (Sturnus vulgaris), and some laboratory ro-
dents display a decrease in HPA-axis sensitivity following chronic and/
or early-life stressor experience, consistent with our own findings
(Goerlich et al., 2012; Rich and Romero, 2005; Romero, 2004). These
differences in the HPA-axis response to early-life stressor experience
may be due to methodological or species-specific differences. Timing
and intensity of stressor experience are known to alter short- and long-
term HPA-axis responses both between and within species (Liu et al.,
2000; Lyons et al., 2009; Marasco et al., 2012; Matthews, 2002;
Schoech et al., 2011). For example, precocial Japanese quail (Coturnix
coturnix japonica) exhibit higher HPA axis responses in adulthood fol-
lowing pre-natal corticosterone treatment, but no change following
post-natal treatment (Marasco et al., 2012). Species-specific differences
in life-history may also influence responses to stressors (Henriksen
et al., 2011).

HPA-axis hyposensitivity following stressor experience could be due
to (1) physiological exhaustion from stressor experience, (2)

habituation to the stressor, or (3) downregulation of the HPA-axis stress
response (Rich and Romero, 2005). Physiological exhaustion from
stressor exposure is an unlikely explanation in our study because re-
sponses were measured across the lifespan; long-after stress treatment
had ended. Birds were fed ad libitum and body condition quickly re-
covered once independent feeding was achieved post-treatment (Grace
et al., 2017a). Regarding habituation, our treatment was designed to
discourage habituation to stressor timing. Additionally, both control
and CORT-fed birds were exposed to identical handling stress during
and after treatment, providing equal opportunity for habituation in
these two groups. However, glucocorticoids are known to enhance
memory consolidation (Roozendaal, 2002), and early-life stressors can
have long-term positive effects on associative learning (Brust et al.,
2014; Goerlich et al., 2012; Kriengwatana et al., 2015). Habituation
occurs more quickly when associative learning is high (Duerr and
Quinn, 1982). Thus, CORT-fed birds may have habituated more quickly
to human handling due to enhanced learning and memory of handling
events compared to control birds. For this to explain our pre-fledgling

Fig. 3. Effect of mass at eight days post-hatching, before treatment began, on
baseline [CORT] at the (A) pre-fledging (N = 103), (B) juvenile (N = 71), and
(C) adult (N = 59) life stages. Dots represent data points for individual birds,
long dashed lines are regression lines and dotted lines are confidence intervals.
Nestling mass is negatively related to baseline [CORT] at the pre-fledging stage,
and that effect weakens and disappears in later life stages.

Fig. 4. Effect of current body condition (z-scored) on baseline [CORT] at the
(A) pre-fledging (N = 103), (B) juvenile (N = 71), and (C) adult (N = 59) life
stages. Dots represent data points for individual birds, long dashed lines are
regression lines and dotted lines are confidence intervals. Body condition is z-
scores of the Scaled Mass Index calculated using body mass and tarsus data at
each life stage. Body condition has a negative relationship with baseline
[CORT] at the pre-fledging stage, but that effect weakens, then becomes slightly
positive by the adult stage.
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results, however, habituation would have had to occur very quickly.
Finally, HPA-axis hyposensitivity could be due to downregulation of the
HPA-axis stress response, a potentially adaptive organizational effect in
response to post-natal stress exposure. The physiological/neurological
mechanisms of reduced HPA activity in our study is unknown, but may
include changes to glucocorticoid and mineralocorticoid receptors, or
the serotonergic system (Banerjee et al., 2012; Matthews, 2002; Zimmer
and Spencer, 2014).

4.3. HPA axis downregulation: an evolutionary perspective

HPA axis hyposensitivity in this study may indicate adaptive
downregulation of the physiological stress response under the Match-
Mismatch Hypothesis, if early-life GC exposure indicates an un-
predictable or low quality future environment (Breuner, 2008;
Gluckman and Hanson, 2004; Love and Williams, 2008a). Although no
long-term effects of post-natal CORT on growth or body condition occur
in this population (Grace et al., 2017a), post-natal CORT exposure does
reduce nestling size and induce catch-up growth during the juvenile
stage (Grace et al., 2017a). Reduced size and body condition at fledging
is consistent with known acute GC effects on metabolism (Schmidt
et al., 2012; Spencer and Verhulst, 2008; Verhulst et al., 2006). Cir-
culating GCs typically increase in vertebrates in response to non-vo-
luntary fasting (Landys et al., 2006) or to a drop in body temperature,
as occurs when an incubating female is absent from the nest (Lynn and
Kern, 2018). In house sparrows, specifically, stress-induced [CORT] is
higher for fledglings who had low nestling body mass, suggesting a GC
response to nutritional stress (Lendvai et al., 2009). Thus, our experi-
mental increase in circulating [CORT] coupled with decreased nestling
body condition and size would be consistent with indicators of un-
predictable resources.

Downregulated GCs may be beneficial under poor quality or un-
predictable environments for several reasons. First, desensitization of
the HPA-axis response may be necessary to avoid the high energetic and
other costs of frequently elevated circulating glucocorticoids in an un-
predictable environment (Angelier and Wingfield, 2013; Goerlich et al.,
2012; Rich and Romero, 2005; Sapolsky et al., 2000). Second, dam-
pened baseline and stress-induced GCs can function to conserve glu-
cose, thus depressed HPA activity may promote resource tracking and
enhance survival in an environment with unpredictable resources
(Breuner, 2008; Haussmann et al., 2012; Love and Williams, 2008a).
The captive environment, and ad libitum food availability of our study
unfortunately did not provide an opportunity to test this potential
benefit to survival. However, the energy conservation benefits of
downregulated GCs probably come at a cost to high energy behaviors
enhanced by GCs, including vigilance and fear-related behaviors that
may promote survival if predation risk is high (Breuner, 2008;
Haussmann et al., 2012).

Previous work in this population has confirmed detrimental effects
of post-natal CORT exposure on adult anti-predator behavior (Grace
et al., 2017b), which may be mediated by long-term effects on circu-
lating GCs. Fitness effects of post-natal CORT have also been identified
in this population. Mortality risk is positively associated with the de-
gree of compensatory juvenile growth (Grace et al., 2017a), which is a
widespread consequence of poor neonatal nutrition (Metcalfe and
Monaghan, 2001) and post-natal GC exposure (Grace et al., 2017a;
Spencer et al., 2009), suggesting that GCs may be mediators of this
trade-off between growth and longevity (Grace et al., 2017a; Metcalfe
and Monaghan, 2003). Mortality risk may also be affected by long-term
effects of downregulated GCs on the immune response. Baseline GCs
permissively mediate immune responses within moments of exposure to
a stressor, while stress-induced GCs play a critical role in restraining the
immune and inflammatory responses and preventing pathological
overshoot (reviewed in Sapolsky et al., 2000). Downregulated GCs may
thus decrease survival if mortality risk is dominated by predation or
infection, but increase survival if dominated by resource availability or

quality (Haussmann et al., 2012).
GCs have a complicated relationship with reproductive success in

other studies (Crespi et al., 2013; Sapolsky et al., 2000) that may reflect
predominantly indirect effects on reproduction (Sapolsky et al., 2000).
Baseline GCs are elevated during reproduction in oviparous species
(Crespi et al., 2013), positively associated with brood value between
bird species (Bókony et al., 2009), but can be positively (e.g., Chastel
et al., 2005), negatively (e.g., Angelier et al., 2013), or not associated
with reproductive success (Bonier et al., 2009). Stress-induced GCs
have similarly variable relationships with reproductive success (Crespi
et al., 2013), and are negatively related in some species (Crespi et al.,
2013), and unrelated in others (e.g., Angelier et al., 2013). Previous
work in this population of house sparrows suggests that post-natal
CORT exposure may have negative effects on reproductive success for
males by decreasing male sexual ornamentation (Dupont et al., 2019).
Future studies are needed to determine if timing of breeding, pairing
success, and numbers of offspring produced are affected by current or
post-natal CORT exposure in this species.

5. Conclusions

In summary, we show that post-natal, developmental corticosterone
exposure at stress-induced concentrations is associated with long-term
depression of both baseline and stress-induced circulating [CORT],
through adulthood in wild, captive house sparrows. These results are
broadly consistent with the Match-Mismatch Hypothesis in that
downregulated glucocorticoids may promote a phenotype of resource
conservation (Breuner, 2008; Haussmann et al., 2012; Love and
Williams, 2008a), which would enhance survival in the wild under
unpredictable or variable resource conditions. The HPA axis stress re-
sponse is well recognized for mediating life-history trade-offs during
perturbations, by reallocating resources to immediate survival from
other life-history components (Angelier et al., 2013; Crespi et al., 2013;
Wingfield and Sapolsky, 2003). Thus, a downregulated HPA axis stress
response would be expected to promote increased reproductive effort
under unpredictable conditions, but would be detrimental to survival
under conditions of high predation, for instance, in which a strong re-
sponse is necessary for fight-or-flight success. Early-life programming of
the HPA axis is one tool that vertebrates may use to maximize the fit-
ness benefit from these trade-offs, when the early-life environment is
predictive of the future mature environment.
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