Pelagic food web structure in high nutrient low chlorophyll (HNLC) and naturally iron fertilized waters in the Kerguelen Islands region, Southern Ocean

Brian P.V. Hunta,b,c,*, Boris Espinassed, Evgeny A. Pakhomova,b,c, Yves Cherele, Cédric Cottéf, Alice Delegrangeg,h, Natasha Henschkeb

a Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
b Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia, Canada
c Hakai Institute, Heriot Bay, British Columbia, Canada
d Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromso, Norway
e Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS - La Rochelle Université, 79360 Villiers-en-Bois, France
f Sorbonne Universités, CNRS, IRD, MNHN, Laboratoire d'Oceanologie et du Climat: Expérimentations et Approches Numériques (LOCEAN-IPSL), Paris, France
g Institut National Supérieur du Professariat et de l'Éducation (INSPE) - Académie de Lille Hauts-de-France, Site d'Ostrecht10, rue H. Adam, 62230, Ostrecht, France
h Laboratoire d'Océanologie et de Géosciences - LOG UMR CNRS 8187, Maison de la Recherche en Environnement Naturel 32, Avenue Foch, 62930 Wimereux, France

* Corresponding author at: Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada.
E-mail address: b.hunt@oceans.ubc.ca (B.P.V. Hunt).

https://doi.org/10.1016/j.jmarsys.2021.103625

Received 22 December 2020; Received in revised form 29 June 2021; Accepted 13 August 2021

1. Introduction

The Southern Ocean is broadly characterized as a High Nutrient Low Chlorophyll (HNLC) region where productivity is limited by the micronutrient iron (de Baar et al., 1995). Regions of naturally occurring iron enrichment occur in the vicinity of shallow bathymetry (e.g., continental shelf environments and island shelves) or in association with sea ice melt. Such regions are associated with enhanced phytoplankton...
productivity and can support a high biomass of consumers, for example, South Georgia (Korb et al., 2008) and Kerguelen Islands (Blain et al., 2007). While the physiological mechanisms behind the importance of iron to increased primary productivity are well understood (Olson et al., 2000), and the link to increased food web biomass established (Hindell et al., 2011), few studies have examined the effect of iron enrichment on the structure and function of Southern Ocean food webs (Stowasser et al., 2012; Tarling et al., 2012).

Pelagic food webs begin with phytoplankton, and here iron availability can play a key role in setting the food web base, impacting the species composition of phytoplankton communities (Hoffmann et al., 2006), their biochemical composition (Hoffmann et al., 2007), and their size structure (Sunda and Huntsman, 1997). Size is a particularly important parameter in food web interactions. Synthetic analyses of predator-prey size relationships across terrestrial to marine ecosystems has demonstrated that in > 90% of feeding linkages predators are larger than their prey (Cohen et al., 1993; Barnes et al., 2010). Indeed, in marine ecosystems, body size can be a better predictor of trophic position than an organism’s taxonomy (Sheldon et al., 1972; Jennings et al., 2007). The importance of body size to trophic enrichment factors, baselines, and consumers, and the associated error propagation through estimates. However, the development of Bayesian approaches have overcome some of these limitations, while also taking into account both δ13C and δ15N in trophic position estimates (Phillips et al., 2014; Quezada-Romegalli et al., 2018).

The Kerguelen plateau represents an ideal region to investigate the role of natural iron fertilization in structuring pelagic food webs in the Southern Ocean. The plateau extends south-east of the Kerguelen Islands, and has a shallow bathymetry (< 700 m) that represents a major obstacle to the Antarctic Circumpolar Current (ACC) (Park et al., 2008). Circulation interactions with the shallow topography transport iron to the surface waters of the plateau where a bloom routinely forms between November and February, with an areal extent of up to 45,000 km² (Blain et al., 2007; Mongin et al., 2008). From February to March 2018, the “Marine Ecosystem Biodiversity and Dynamics of Carbon around Kerguelen” program, hereafter referred to as MOBYDICK, set out to research contrasting productivity regimes in the Kerguelen region during the post-bloom period. The MOBYDICK expedition builds upon three previous programs in the area: the Kerguelen Ocean and Plateau compared Study (KEOPS) in summer 2005, KEOPS2 in spring 2011, and the “Myctophid assessment in relation to Oceanographic conditions: a three Dimension Density Distribution approach combining Modelling, Acoustic-and Predators’ data” (MyctO-3D-MAP) in summer 2014. The MOBYDICK station positions were selected to coincide with areas sampled during these previous surveys and included one station on the plateau (iron enriched), two stations to the west of the plateau (iron limited), and one station to the east of the plateau (iron enriched).

According to size structured feeding dynamics and stability driven decreases in PPMR, we predicted that iron rich regions, dominated by large microphytoplankton and large amplitude blooms, would have shorter food chains than iron limited regions dominated by smaller phytoplankton size classes and lower amplitude blooms. To test this prediction, we used 1) stable isotope data collected during the MOBYDICK expedition to estimate the trophic position of the mesozooplankton, macrozooplankton and micronekton components of the pelagic food web; 2) and specifically compared trophic position estimates of these food web components between iron enriched and iron limited regions in the vicinity of the Kerguelen Plateau. These measurements are expected to provide new insights into the role of iron supply in pelagic food web structure and function in the Southern Ocean, with implications for materials flux.

2. Methods

Sampling during the MOBYDICK expedition was completed aboard the Marion Dufresne II from 26 February to 19 March 2018. The location of the four stations sampled is indicated in Fig. 1. Station M2 was located on the plateau, and was the “bloom” reference station A3 in KEOPS and KEOPS2. Station M3, located to the west of the plateau, corresponded to the KERFIX station of KEOPS, and M4, also west of the plateau, was located roughly 100 nautical miles south of the HNLC reference stations of KEOPS2 (Blain et al., 2015). Repeat sampling was conducted at stations M2, M3, and M4 (Table 1). Station M1 was located east of Kerguelen, in the core foraging area of the Kerguelen king penguin population (Scheffer et al., 2016), and was only sampled once.

2.1. Sample collection

Particulate organic matter (POM) was sampled in conjunction with each WP2 + 3 zooplankton net deployment, collected from the shipboard sea water line from a depth of ~10 m. Approximately 2 L of water was filtered onto a 25 mm pre-combusted GF/F filter by vacuum filtration. Mesozooplankton were sampled with a WP2 net (2.5 m long, 57 cm diameter) fitted with 200 μm mesh and deployed to a depth of 200 m. Macrozooplankton were collected with a WP3 net (2 m long, 1.13 m diameter) fitted with 1000 μm mesh. The WP2 and WP3 were deployed once during the night at station M1, and once each during the day and night on each visit to stations M2-M4. Three daytime and three
nighttime trawls were conducted on each visit to all stations using a Mesopelagios trawl designed by Fiener (Fisheries Biology and Technology Laboratory, LTBH, Lorient, France) (Meillat, 2012). This non-closing trawl has vertical and horizontal openings which vary between 5 and 6 m and 10 and 12 m, respectively. The trawl has a mesh size of 40 mm in the wings, reducing to 5 mm in the codend. A Scanmar acoustic device (Åsgårdstrand, Norway) was attached to the net for real time monitoring of trawl depth simultaneously with acoustic measurements (Williams and Koslow, 1997). Sampling depths were dependent on acoustic backscatter, with trawls targeting areas of high backscattering signals in shallow, middle and deep layers (Table 1). During trawling, the vessel maintained a speed of 1.5 m s\(^{-1}\) while fishing the target depth for ~30 min. The trawl was deployed and retrieved as fast as possible to ensure that organisms were mainly caught at the targeted depth.

Table 1

<table>
<thead>
<tr>
<th>Station</th>
<th>Date</th>
<th>POM</th>
<th>WP2 + 3</th>
<th>(n_{p2-3})</th>
<th>Trawl</th>
<th>(n_{troll})</th>
<th>Trawl Depths (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>8</td>
<td>Yes</td>
<td>1</td>
<td>Yes</td>
<td>5</td>
<td>50, 400, 632</td>
<td>617, 50-632</td>
</tr>
<tr>
<td>M1</td>
<td>9</td>
<td>No</td>
<td>0</td>
<td>Yes</td>
<td>1</td>
<td>35, 180, 340</td>
<td>350, 350-0</td>
</tr>
<tr>
<td>M2-1</td>
<td>26</td>
<td>Yes</td>
<td>1</td>
<td>Yes</td>
<td>4</td>
<td>50, 160, 170</td>
<td>310</td>
</tr>
<tr>
<td>M2-2</td>
<td>7</td>
<td>Yes</td>
<td>1</td>
<td>Yes</td>
<td>5</td>
<td>70, 200, 350</td>
<td>70-350</td>
</tr>
<tr>
<td>M2-3</td>
<td>16</td>
<td>Yes</td>
<td>1</td>
<td>Yes</td>
<td>3</td>
<td>360, 400, 460</td>
<td>610</td>
</tr>
<tr>
<td>M3-1</td>
<td>15</td>
<td>Yes</td>
<td>1</td>
<td>Yes</td>
<td>4</td>
<td>650, 800, 810</td>
<td>55-460</td>
</tr>
<tr>
<td>M3-2</td>
<td>18</td>
<td>Yes</td>
<td>1</td>
<td>Yes</td>
<td>4</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>M3-3</td>
<td>19</td>
<td>Yes</td>
<td>1</td>
<td>No</td>
<td>0</td>
<td>75, 380, 560</td>
<td>575</td>
</tr>
<tr>
<td>M4-1</td>
<td>2</td>
<td>Yes</td>
<td>1</td>
<td>Yes</td>
<td>4</td>
<td>80, 550, 600</td>
<td></td>
</tr>
<tr>
<td>M4-2</td>
<td>14</td>
<td>Yes</td>
<td>1</td>
<td>Yes</td>
<td>3</td>
<td>50, 400, 632</td>
<td>617</td>
</tr>
</tbody>
</table>

2.2. Sample processing

The WP2 net samples were size fractionated into 6 size classes with a sieve column: 125–250, 250–500, 500–1000, 1000–2000, 2000–4000, and > 4000 μm. The size fractions < 4000 μm were filtered onto 47 mm pre-combusted and pre-weighed GF/F filters by vacuum filtration and then oven dried at 50 °C for 48 h onboard the vessel. The > 4000 μm size fraction was separated into species, and specimens measured, grouped into logarithmic size bins, and dried at 50 °C for 48 h onboard the vessel. Macrozooplankton and micronekton were sampled from the midwater trawls with the aim to have representation of major taxa and size classes from all trawls. All individuals were measured to the nearest 1 mm. In the case of smaller animals (< 50 mm), the entire animal was collected. In the case of larger animals, a muscle tissue sample (~20 mg) was collected. All samples were oven dried for 48 h at 50 °C onboard the vessel. Once returned to the laboratory all samples were weighed to the nearest 0.01 mg.

2.3. Isotope analysis

Samples were not treated to remove lipids or inorganic carbon prior to stable isotope analysis. Stable carbon and nitrogen elemental and isotopic compositions for all organisms were measured at the University of Victoria Isotope Facility using a Costech 4010 elemental analyzer (Costech, Florence) coupled via continuous flow to a Thermo Finnegan Delta Advantage isotope ratio mass spectrometer (Thermo-Finnigan, Bremen, Germany). Stable isotope values were expressed in standard δ (%) notation and a two-point calibration anchored with internal reference materials (‘Caffeine’ and ‘Dorm’, themselves determined using IAEA N1, N2, and CH-6 as well as NBS-22; ESM Table S1) was used to calibrate δ\(^{13}\)C and δ\(^{15}\)N relative to Pee Dee Belemnite for carbon and Air for nitrogen. Standard deviations for calibration standards for δ\(^{13}\)C and δ\(^{15}\)N, respectively, were ±0.3% and ±0.2% for Caffeine (\(n = 3\)) and ±0.3% and ±0.2% for Dorm (\(n = 5\)). Carbon isotope values were lipid corrected according to individual organism C:N ratios, using the equation from (Hoffman and Sutton, 2010) for fish and from (Smyntek et al., 2007) for invertebrates.

2.4. Trophic position calculation

When applying bulk isotopes to estimate food web properties an isolate baseline is required as an anchor point. The isotopic value of POM has frequently been used as representative of phytoplankton. However, this value can have high temporal variability, showing rapid response (days) to fluctuations in nutrients and phytoplankton growth rates (Lorrain et al., 2015), while also being influenced by non-phytoplankton particulates, including faecal pellets (Checkley Jr. and Enteroth, 1985) and microzooplankton. An alternative approach to establishing a trophic baseline is to use the isotopic value of a primary consumer. Salps (tunicates) have been used in a number of studies (Post, 2002; Chere_ et al., 2010; Stowasser et al., 2012). However, recent analysis has identified salps as unreliable baseline measures due to their unique feeding biology (Pakhomov et al., 2019). For this study we have used the isolate values of the zooplankton size classes ≤1000 μm as the trophic baseline. Since no zooplankton can be considered to be truly herbivorous, we assigned a trophic level of 2.25 to this group to take into account a degree of omnivory.

The species sampled, and the number of animals sampled per species, varied between stations. To optimize the comparability of sample sets among stations for trophic position calculation, the data set was filtered to include only taxa that were common to all stations (see Fig. 4). Salpa thompsoni were not included in the trophic position analysis due to uneven sample size, and their unique trophic ecology, and they are rather discussed separately. Common taxa, excluding S. thompsoni, were grouped into the length-based groups of mesozooplankton (125 μm ≤ 10 mm), macrozooplankton (10–30 mm), micronekton (> 30 to 200
mm) (see Table s1 for sample sizes). Trophic positions were calculated using a one-source, two-isotope (carbon and nitrogen) Bayesian isotope mixing model implemented with the tRophicPosition package (version 0.7.7, Quezada-Romegialli et al., 2018) in R (R Core Team, 2020). The benefits of this approach are that it explicitly includes individual variability and propagation of sampling error (trophic enrichment factors, and measurements of baselines and consumers) in the modelling approach and posterior estimates of parameters. We used Post’s (2002) trophic enrichment factor values of 3.4 ± 0.98 (mean ± standard deviations) for δ15N and 0.39 ± 1.3 for δ13C. The Bayesian model ran 20,000 iterations for the adaptive phase, 20,000 iterations as burnin (iterations discarded at the beginning of posterior sampling) and 20,000 actual iterations. The model used five parallel Markov Chain Monte Carlo(MCMC) simulations using the JAGS (ver. 4.3.0) Gibbs sampler (Plummer, 2003). The median posterior trophic positions are presented showing the 95% credibility intervals. We then conducted pairwise comparisons of the posterior distributions among classes with a logical test that one was greater (>) than the other, randomly sampling posterior distributions until all posterior estimates were compared. The probability that one class had a higher trophic level than the other increased as the value approached 1. Finally, the Bhattacharyya coefficient was used to calculate the probability of overlap between two distributions, with the probability increasing towards 1 (Quezada-Romegialli et al., 2018).

3. Results

Water mass tracking, described in detail in Henschke et al. (2021), estimated retention times of >60 days at all sites (Table 2). This suggests that the same water masses were sampled during each repeat visit to stations M2, M3 and M4. Mixed layer depth was lowest at M1 (27 m) and ranged between 50 and 90 m on repeat visits to the other stations. Mean MLD phytoplankton biomass was highest at station M2–3 (0.58 μg L−1), but was generally < 0.3 μg L−1. A large phytoplankton bloom was observed at Stations M1 and M2 in December – January, two to three months prior to the MOBYDICK expedition, where phytoplankton biomass exceeded 2 μg L−1 (Figure s1). Elevated phytoplankton biomass was also observed at the upstream stations M3 and M4 at this time, through levels were substantially lower (~ 0.5 μg L−1). Mixed layer water temperature was highest at station M3. The absence of a temperature minimum at 200 m at M3 confirmed that it was conducted

north of the Polar Front (PF), whereas M1, M2 and M4 stations were located south of the PF in the Antarctic Zone (Henschke et al., 2021). Zooplankton biomass was lowest at stations M1 and M3–1 (~ 5 mgC m−3) and averaged 10.84 mgC m−3 across all other stations with a maximum of 13.65 mgC m−3 at Station M4–1. Highest values of crustacean biomass were observed at M2, while the highest fish biomass was observed at M3.

Trophic positions were calculated using station specific δ13C and δ15N values of zooplankton size classes ≤ 1000 μm as the trophic baseline. Comparison with other baseline proxies showed that zooplankton had lower within site variability than either POM or Salpa thompsoni, and that δ15N values had the least variability within stations (Fig. 2). Carbon isotope values (Fig. 2A) were highest at M2 (average = −23.4‰) and lowest at M3 (ave. = −25.3‰) and M4 (ave. = −26.2‰). A decreasing trend over time in zooplankton δ13C values was evident at M2 and M3. The δ15N values of S. thompsoni generally followed the same pattern as POM. Nitrogen isotope values of zooplankton (Fig. 2B) were highest at M2 (ave. = 2.3‰), followed by M1 (ave. = 0.9‰), and were lowest at M3 (ave. = −0.1) and M4 (ave. = 0.1). The δ15N values of zooplankton decreased slightly over time at M2. A much stronger decreasing trend was apparent for POM and S. thompsoni at M2, likely reflecting the higher tissue turnover rates of these groups relative to zooplankton.

The mesozooplankton size class largely comprised zooplankton from the WP2 net size fractions <2000 μm and copepods (Fig. 3A). Both the macrozooplankton and micronekton included a mix of gelatinous and non-gelatinous taxa. Macrozooplankton included pteropods (gymnosomes and thecosomes), siphonophores, hydrozoans, gammarids, mysids, and euphausiids. Micronekton included squid, decapods, scyphozoans, tunicates, fish, chaetognaths and ctenophores. Nitrogen isotopes typically increase with trophic level which is expected to correlate with organism size. This was largely the case in this study, and fish, which included the largest individuals, had the highest median δ15N values (Fig. 3B). However, the large gelatinous taxa of tunicates, chaetognaths and ctenophores all had low δ15N values relative to their size. This was at least expected for the small particle grazing tunicates, which in this case comprised entirely of Salpa thompsoni (Fig. 2). The widest range of δ15N values was observed for copepods, indicating diverse foraging strategies in this group.

Mean δ15N values are presented for the 20 taxa used in the posterior trophic position analysis, as well as the tunicate S. thompsoni (Fig. 4).

<table>
<thead>
<tr>
<th>Station</th>
<th>Date</th>
<th>Summer bloom</th>
<th>Residence time (days)a</th>
<th>MLD (m)b</th>
<th>Chla,MLDmean (μg L−1)c</th>
<th>T°C</th>
<th>Zooplankton biomass (mgC m−3)</th>
<th>Crustacean biomass (mgC m−3)d</th>
<th>Gelatinous biomass (mgC m−3)d</th>
<th>Fish biomass (mgC m−3)d</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>08</td>
<td>Yes</td>
<td>− 60</td>
<td>27</td>
<td>0.35</td>
<td>4.99</td>
<td>5.17</td>
<td>0.267</td>
<td>0.463</td>
<td>0.396</td>
</tr>
<tr>
<td>M2-1</td>
<td>26</td>
<td>Yes</td>
<td>> 60</td>
<td>62</td>
<td>0.27</td>
<td>5.10</td>
<td>12.15</td>
<td>0.252</td>
<td>0.755</td>
<td>0.066</td>
</tr>
<tr>
<td>M2-2</td>
<td>07</td>
<td>Yes</td>
<td>> 60</td>
<td>61</td>
<td>0.30</td>
<td>5.24</td>
<td>9.62</td>
<td>1.657</td>
<td>0.612</td>
<td>0.239</td>
</tr>
<tr>
<td>M2-3</td>
<td>16</td>
<td>Yes</td>
<td>> 60</td>
<td>68</td>
<td>0.58</td>
<td>4.99</td>
<td>12.07</td>
<td>0.143</td>
<td>0.229</td>
<td>0.029</td>
</tr>
<tr>
<td>M3-1</td>
<td>15</td>
<td>No</td>
<td>> 60</td>
<td>65</td>
<td>0.20</td>
<td>5.60</td>
<td>4.97</td>
<td>0.218</td>
<td>0.184</td>
<td>0.119</td>
</tr>
<tr>
<td>M3-2</td>
<td>18</td>
<td>No</td>
<td>> 60</td>
<td>79</td>
<td>0.14</td>
<td>5.31</td>
<td>10.43</td>
<td>0.280</td>
<td>0.012</td>
<td>0.014</td>
</tr>
<tr>
<td>M4-1</td>
<td>02</td>
<td>No</td>
<td>> 60</td>
<td>49</td>
<td>0.18</td>
<td>4.45</td>
<td>13.65</td>
<td>0.166</td>
<td>0.208</td>
<td>0.222</td>
</tr>
<tr>
<td>M4-2</td>
<td>14</td>
<td>No</td>
<td>> 60</td>
<td>87</td>
<td>0.21</td>
<td>4.46</td>
<td>7.12</td>
<td>0.021</td>
<td>0.305</td>
<td>0.002</td>
</tr>
</tbody>
</table>

a Henschke et al. (2021).
b Irion et al. (2020).
c Cotté et al. (in review - this issue).
Overall, δ¹⁵N values increased with organism size for all taxa. Salpa thompsoni consistently had the lowest δ¹⁵N values, and interestingly the hyperiid amphipods Cyllopus magellanicus and Vibilia antarctica both had low δ¹⁵N values, suggesting predation on S. thompsoni. The myctophid Electrona antarctica had the highest δ¹⁵N values, indicating that this species had the highest trophic level. Values of δ¹³C also generally increased with size, although this trend was not as apparent as for δ¹⁵N.

The three organism size classes of mesozooplankton, macrozooplankton, and micronekton showed a consistent pattern of posterior trophic positions (PTP). Mesozooplankton and macrozooplankton were always similar with the greatest difference in trophic position between these classes being 0.16 at station M4 (Fig. 3; Table s2). The median PTP of meso/macrozooplankton was 0.74 PTPs higher at M3 than M2, 0.62 PTPs higher at M4 than M2, and 0.41 PTPs higher at M1 than M2. Micronekton were on average 0.57 trophic positions higher than meso/macrozooplankton and micronekton, with the greatest difference being 0.81 trophic positions at station M4. PTPs were lowest at M2, with an average of 2.4 for meso and macrozooplankton. Pairwise comparison of PTPs found high probability (0.9–1) that PTPs were greater at stations M1, M3 and M4 than M2 (Table 3), and a high probability that PTPs
were greater at M3 and M4 than M1. The probability of overlap of PTP distributions was low between M2 and stations M3 and M4, being <0.3 except for M4 mesozooplankton vs M2 meso/macrozooplankton (~0.4; Table 4). This provided further support for the distinct, higher, PTPs in the upstream vs plateau stations. The probability of overlap between station M1 and all other stations was generally >0.55, demonstrating that the downstream region was intermediate in PTP characteristics between the plateau and upstream region.

4. Discussion

The Kerguelen Islands and plateau are a region of natural iron fertilization within the typically iron limited High Nutrient Low Chlorophyll (HNLC) waters of the eastward flowing Antarctic Circumpolar Current. The MOBYDICK expedition provided an opportunity to investigate the effect of iron enhanced productivity on the structure and function of the lower trophic levels of the Southern Ocean food web, at the end of the summer phytoplankton bloom. This study sampled the mesozooplankton, macrozooplankton, and micronekton food web in the HNLC waters to the west of the Kerguelen Plateau, in the iron enriched waters on the plateau, and the waters east of the plateau which are iron enriched by off-plateau advection (Ovidio et al., 2015). Using bulk carbon and nitrogen stable isotope we demonstrated that the trophic positions of meso and macrozooplankton were >0.6 trophic levels higher at the upstream HNLC stations than on the plateau, and were also elevated downstream of the plateau, though to a lesser extent. This supported the prediction that the iron rich plateau would have a shorter food chain than the iron limited upstream region, and that the downstream region had enhanced production due to iron enrichment from the plateau. Below we discuss our findings in the context of the Kerguelen region pelagic ecosystem dynamics, and the implications for energy flow in the contrasting productivity regimes.

The MOBYDICK expedition took place in the post-bloom period of the seasonal production cycle and phytoplankton biomass was low in all sampled areas (<0.6 μgL⁻¹), but lowest upstream of the plateau (<0.22 μgL⁻¹). However, satellite observations showed that in December/January prior to the expedition phytoplankton biomass reached a peak of >2 μgL⁻¹ over the plateau region where station M2 was located, and downstream (east) of the plateau, highlighting the effect of natural iron fertilization. The seasonal bloom cycle and spatial extent observed in
2018 were consistent with observations in previous years, indicating that this is a recurring feature of the region (Blain et al., 2007; Lau-
renceau-Cornec et al., 2015). The HNLC region upstream of the Ker-
guelen Plateau is broadly representative of the Southern Ocean and is
dominated by small phytoplankton, with picophytoplankton comprising
up to 50% and nanophytoplankon (>20% (mostly Phaeocystis
and small
diatoms, e.g., Fragilariopsis
and
Chaetoceros
(Lasbleiz et al., 2016). Conversely, blooms over the plateau are domi-
nated by large diatoms and smaller chain forming diatoms such as
Pseudo-nitzschia
and
Chaetoceros
(Lasbleiz et al., 2016). In the post-bloom
period sampled during MOBYDICK, Prymnesiophytes, dominated by
Phaeocystis antarctica
(3 μm cell size), were the most abundant phytoplank-
on group, representing up to 53% and 70% of the Chl-a on and off
the plateau, respectively (Irion et al., 2020). Small diatoms, e.g., Fragi-
lariopsis
and
Chaetoceros
, were abundant at stations M4 and M1, while
M3 had the lowest contribution of diatoms (25% of Chl-a), likely due to
silicate and iron co-limitation. On the plateau, large diatoms, e.g.,
Cor-
eethron, dominated in low silicate post-bloom conditions in the mixed
layer. Below the mixed layer, large and heavily silicified diatoms were
abundant (e.g., Eucampia and Odontella).

Table 3

<table>
<thead>
<tr>
<th></th>
<th>M1-Meso</th>
<th>M1-Macr</th>
<th>M1-Mnek</th>
<th>M2-Meso</th>
<th>M2-Macr</th>
<th>M2-Mnek</th>
<th>M3-Meso</th>
<th>M3-Macr</th>
<th>M3-Mnek</th>
<th>M4-Meso</th>
<th>M4-Macr</th>
<th>M4-Mnek</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1-Meso</td>
<td>0.00</td>
<td>0.99</td>
<td>0.84</td>
<td>0.57</td>
<td>0.55</td>
<td>0.88</td>
<td>0.83</td>
<td>0.73</td>
<td>0.29</td>
<td>0.96</td>
<td>0.81</td>
<td>0.23</td>
</tr>
<tr>
<td>M1-Macr</td>
<td>0.99</td>
<td>0.00</td>
<td>0.86</td>
<td>0.63</td>
<td>0.61</td>
<td>0.85</td>
<td>0.84</td>
<td>0.73</td>
<td>0.33</td>
<td>0.96</td>
<td>0.80</td>
<td>0.26</td>
</tr>
<tr>
<td>M1-Mnek</td>
<td>0.84</td>
<td>0.86</td>
<td>0.00</td>
<td>0.30</td>
<td>0.28</td>
<td>0.77</td>
<td>0.96</td>
<td>0.89</td>
<td>0.65</td>
<td>0.90</td>
<td>0.91</td>
<td>0.52</td>
</tr>
<tr>
<td>M2-Meso</td>
<td>0.57</td>
<td>0.63</td>
<td>0.30</td>
<td>0.00</td>
<td>1.00</td>
<td>0.24</td>
<td>0.23</td>
<td>0.09</td>
<td>0.00</td>
<td>0.43</td>
<td>0.17</td>
<td>0.00</td>
</tr>
<tr>
<td>M2-Macr</td>
<td>0.55</td>
<td>0.61</td>
<td>0.28</td>
<td>1.00</td>
<td>0.00</td>
<td>0.21</td>
<td>0.20</td>
<td>0.07</td>
<td>0.00</td>
<td>0.40</td>
<td>0.14</td>
<td>0.00</td>
</tr>
<tr>
<td>M2-Mnek</td>
<td>0.88</td>
<td>0.85</td>
<td>0.77</td>
<td>0.24</td>
<td>0.21</td>
<td>0.00</td>
<td>0.86</td>
<td>0.84</td>
<td>0.15</td>
<td>0.94</td>
<td>0.90</td>
<td>0.07</td>
</tr>
<tr>
<td>M3-Meso</td>
<td>0.83</td>
<td>0.84</td>
<td>0.96</td>
<td>0.23</td>
<td>0.20</td>
<td>0.86</td>
<td>0.00</td>
<td>0.97</td>
<td>0.50</td>
<td>0.93</td>
<td>0.98</td>
<td>0.34</td>
</tr>
<tr>
<td>M3-Macr</td>
<td>0.73</td>
<td>0.73</td>
<td>0.89</td>
<td>0.09</td>
<td>0.07</td>
<td>0.84</td>
<td>0.07</td>
<td>0.00</td>
<td>0.38</td>
<td>0.87</td>
<td>0.99</td>
<td>0.21</td>
</tr>
<tr>
<td>M3-Mnek</td>
<td>0.29</td>
<td>0.33</td>
<td>0.65</td>
<td>0.00</td>
<td>0.00</td>
<td>0.15</td>
<td>0.50</td>
<td>0.38</td>
<td>0.00</td>
<td>0.34</td>
<td>0.36</td>
<td>0.89</td>
</tr>
<tr>
<td>M4-Meso</td>
<td>0.96</td>
<td>0.96</td>
<td>0.90</td>
<td>0.43</td>
<td>0.40</td>
<td>0.94</td>
<td>0.93</td>
<td>0.87</td>
<td>0.34</td>
<td>0.00</td>
<td>0.93</td>
<td>0.23</td>
</tr>
<tr>
<td>M4-Macr</td>
<td>0.81</td>
<td>0.80</td>
<td>0.91</td>
<td>0.17</td>
<td>0.14</td>
<td>0.90</td>
<td>0.98</td>
<td>0.99</td>
<td>0.36</td>
<td>0.93</td>
<td>0.00</td>
<td>0.21</td>
</tr>
<tr>
<td>M4-Mnek</td>
<td>0.23</td>
<td>0.26</td>
<td>0.52</td>
<td>0.00</td>
<td>0.00</td>
<td>0.07</td>
<td>0.34</td>
<td>0.21</td>
<td>0.89</td>
<td>0.23</td>
<td>0.21</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Table 4

<table>
<thead>
<tr>
<th></th>
<th>M1-Meso</th>
<th>M1-Macr</th>
<th>M1-Mnek</th>
<th>M2-Meso</th>
<th>M2-Macr</th>
<th>M2-Mnek</th>
<th>M3-Meso</th>
<th>M3-Macr</th>
<th>M3-Mnek</th>
<th>M4-Meso</th>
<th>M4-Macr</th>
<th>M4-Mnek</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1-Meso</td>
<td>0.00</td>
<td>0.99</td>
<td>0.84</td>
<td>0.57</td>
<td>0.55</td>
<td>0.88</td>
<td>0.83</td>
<td>0.73</td>
<td>0.29</td>
<td>0.96</td>
<td>0.81</td>
<td>0.23</td>
</tr>
<tr>
<td>M1-Macr</td>
<td>0.99</td>
<td>0.00</td>
<td>0.86</td>
<td>0.63</td>
<td>0.61</td>
<td>0.85</td>
<td>0.84</td>
<td>0.73</td>
<td>0.33</td>
<td>0.96</td>
<td>0.80</td>
<td>0.26</td>
</tr>
<tr>
<td>M1-Mnek</td>
<td>0.84</td>
<td>0.86</td>
<td>0.00</td>
<td>0.30</td>
<td>0.28</td>
<td>0.77</td>
<td>0.96</td>
<td>0.89</td>
<td>0.65</td>
<td>0.90</td>
<td>0.91</td>
<td>0.52</td>
</tr>
<tr>
<td>M2-Meso</td>
<td>0.57</td>
<td>0.63</td>
<td>0.30</td>
<td>0.00</td>
<td>1.00</td>
<td>0.24</td>
<td>0.23</td>
<td>0.09</td>
<td>0.00</td>
<td>0.43</td>
<td>0.17</td>
<td>0.00</td>
</tr>
<tr>
<td>M2-Macr</td>
<td>0.55</td>
<td>0.61</td>
<td>0.28</td>
<td>1.00</td>
<td>0.00</td>
<td>0.21</td>
<td>0.20</td>
<td>0.07</td>
<td>0.00</td>
<td>0.40</td>
<td>0.14</td>
<td>0.00</td>
</tr>
<tr>
<td>M2-Mnek</td>
<td>0.88</td>
<td>0.85</td>
<td>0.77</td>
<td>0.24</td>
<td>0.21</td>
<td>0.00</td>
<td>0.86</td>
<td>0.84</td>
<td>0.15</td>
<td>0.94</td>
<td>0.90</td>
<td>0.07</td>
</tr>
<tr>
<td>M3-Meso</td>
<td>0.83</td>
<td>0.84</td>
<td>0.96</td>
<td>0.23</td>
<td>0.20</td>
<td>0.86</td>
<td>0.00</td>
<td>0.97</td>
<td>0.50</td>
<td>0.93</td>
<td>0.98</td>
<td>0.34</td>
</tr>
<tr>
<td>M3-Macr</td>
<td>0.73</td>
<td>0.73</td>
<td>0.89</td>
<td>0.09</td>
<td>0.07</td>
<td>0.84</td>
<td>0.07</td>
<td>0.00</td>
<td>0.38</td>
<td>0.87</td>
<td>0.99</td>
<td>0.21</td>
</tr>
<tr>
<td>M3-Mnek</td>
<td>0.29</td>
<td>0.33</td>
<td>0.65</td>
<td>0.00</td>
<td>0.00</td>
<td>0.15</td>
<td>0.50</td>
<td>0.38</td>
<td>0.00</td>
<td>0.34</td>
<td>0.36</td>
<td>0.89</td>
</tr>
<tr>
<td>M4-Meso</td>
<td>0.96</td>
<td>0.96</td>
<td>0.90</td>
<td>0.43</td>
<td>0.40</td>
<td>0.94</td>
<td>0.93</td>
<td>0.87</td>
<td>0.34</td>
<td>0.00</td>
<td>0.93</td>
<td>0.23</td>
</tr>
<tr>
<td>M4-Macr</td>
<td>0.81</td>
<td>0.80</td>
<td>0.91</td>
<td>0.17</td>
<td>0.14</td>
<td>0.90</td>
<td>0.98</td>
<td>0.99</td>
<td>0.36</td>
<td>0.93</td>
<td>0.00</td>
<td>0.21</td>
</tr>
<tr>
<td>M4-Mnek</td>
<td>0.23</td>
<td>0.26</td>
<td>0.52</td>
<td>0.00</td>
<td>0.00</td>
<td>0.07</td>
<td>0.34</td>
<td>0.21</td>
<td>0.89</td>
<td>0.23</td>
<td>0.21</td>
<td>0.00</td>
</tr>
</tbody>
</table>
stations during MOBYDICK. While areal mesozooplankton biomass during MOBYDICK was an order of magnitude higher (1–2.7 g C m⁻²) than recorded in November (0.25–0.49 g C m⁻²) during the KEOPS2 survey (Carlotti et al., 2015), it was up to an order of magnitude lower than during the January/February KEOPS survey (3.44–19.26 g C m⁻²) (Carlotti et al., 2008). Although the February/March sampling dates of the MOBYDICK expedition coincided with the period of peak zooplankton biomass observed during the YugNIRO times-series in 1987/88 (Hunt et al., 2011), seasonal Continuous Plankton Recorder data collected across the Sub-Antarctic and Polar Frontal zones in 2001/2002 found a peak of zooplankton abundance in February (Hunt and Hosie, 2006). The seasonal timing of the zooplankton peak biomass likely varies interannually, however, based on the December/January phytoplankton bloom timing in 2018 (Figure s1), zooplankton biomass observed during MOBYDICK was probably declining after the summer peak (Semelkina, 1993; Razoulis et al., 2006; Hunt et al., 2011).

The combined sampling methods conducted during MOBYDICK provided an opportunity to collect stable isotope data for the mesozooplankton, macrozooplankton and micronekton components of HNLC and naturally fertilized water masses in the Kerguelen plateau region. An important consideration when evaluating these data was whether the stable isotope ratios measured were representative of the food web history within the sampled water mass. This would depend on the water mass retention time in the areas sampled and the tissue turnover rates of the organisms. Water mass tracking estimated water mass residence times of at least 60 days in each of the areas sampled by the four stations (Henschke et al., 2021). Organism tissue turnover rates scale with organism size and growth rate (Fry and Arnold, 1982; Hes-slein et al., 1993). The highest turnover rates, and most rapid response to changing food web conditions (e.g., nitrate supply), are therefore expected to occur in particulate organic matter (POM). Laboratory studies indicate that diatom isotope replacement rates can be on the order of days (Montoya and McCarthy, 1995). Few mesocosm studies have been conducted for Southern Ocean zooplankton, with one study reporting tissue turnover rates for Euphausia superba of 54% for nitrogen after 30 days (Schmidt et al., 2003). However, it is expected that warmer water Sub-Antarctic and Antarctic Zone zooplankton during the growing season would have higher turnover rates. Fry and Arnold (1982) reported turnover rates for shrimp and brine shrimp of 4–19 days. In our study, there was evidence for a temporal decline in stable isotope values of POM, S. thompsoni and ≤ 1000 μm zooplankton over the three visits to M2, which spanned three weeks. In the case of micronekton, turnover rates are expected to be weeks to months (Hesslein et al., 1993; Colborne et al., 2017). Given the estimated water mass residence times for the study area, it is reasonable to expect that the measured stable isotope ratios of most taxa were representative of the food web history within the water mass in which they were sampled, including the pre-voyage bloom conditions.

The elevated on-plateau δ¹⁵N values of the stable isotope baseline used in this study, zooplankton ≤ 1000 μm, reflected the higher productivity in this region. Phytoplankton δ¹⁵N values increase in response to nitrate competition during high productivity periods (Altabet and Francois, 2001), and these elevated δ¹⁵N values were transmitted to the zooplankton on the plateau. Using a Bayesian modelling approach, that applied both carbon and nitrogen isotopes values of basalts and consumers, we estimated that the trophic positions of meso and macrozooplankton were > 0.6 higher at the upstream HNLC stations than on the plateau. This would provide empirical support for the prediction that iron rich regions, dominated by large microphytoplankton and large amplitude blooms, would have shorter food chains than iron limited regions dominated by smaller phytoplankton and lower amplitude blooms. The dominance of pico and nanophytoplankton in the HNLC regions dominated by smaller phytoplankton and lower amplitude blooms, would have shorter food chains than iron limited regions, indicated by large microphytoplankton and large amplitude blooms, would have shorter food chains than iron limited regions dominated by smaller phytoplankton and lower amplitude blooms. The dominance of pico and nanophytoplankton in the HNLC regions dominated by smaller phytoplankton and lower amplitude blooms, would have shorter food chains than iron limited regions, indicated by large microphytoplankton and large amplitude blooms, would have shorter food chains than iron limited regions dominated by smaller phytoplankton and lower amplitude blooms. The dominance of pico and nanophytoplankton in the HNLC regions dominated by smaller phytoplankton and lower amplitude blooms, would have shorter food chains than iron limited regions, indicated by large microphytoplankton and large amplitude blooms, would have shorter food chains than iron limited regions dominated by smaller phytoplankton and lower amplitude blooms. The dominance of pico and nanophytoplankton in the HNLC regions dominated by smaller phytoplankton and lower amplitude blooms, would have shorter food chains than iron limited regions, indicated by large microphytoplankton and large amplitude blooms, would have shorter food chains than iron limited regions dominated by smaller phytoplankton and lower amplitude blooms. The dominance of pico and nanophytoplankton in the HNLC regions dominated by smaller phytoplankton and lower amplitude blooms, would have shorter food chains than iron limited regions, indicated by large microphytoplankton and large amplitude blooms, would have shorter food chains than iron limited regions dominated by smaller phytoplankton and lower amplitude blooms. The dominance of pico and nanophytoplankton in the HNLC regions dominated by smaller phytoplankton and lower amplitude blooms, would have shorter food chains than iron limited regions, indicated by large microphytoplankton and large amplitude blooms, would have shorter food chains than iron limited regions dominated by smaller phytoplankton and lower amplitude blooms. The dominance of pico and nanophytoplankton in the HNLC regions dominated by smaller phytoplankton and lower amplitude blooms, would have shorter food chains than iron limited regions, indicated by large microphytoplankton and large amplitude blooms, would have shorter food chains than iron limited regions dominated by smaller phytoplankton and lower amplitude blooms. The dominance of pico and nanophytoplankton in the HNLC regions dominated by smaller phytoplankton and lower amplitude blooms, would have shorter food chains than iron limited regions, indicated by large microphytoplankton and large amplitude blooms, would have shorter food chains than iron limited regions dominated by smaller phytoplankton and lower amplitude blooms. The dominance of pico and nanophytoplankton in the HNLC regions dominated by smaller phytoplankton and lower amplitude blooms, would have shorter food chains than iron limited regions, indicated by large microphytoplankton and large amplitude blooms, would have shorter food chains than iron limited regions dominated by smaller phytoplankton and lower amplitude blooms. The dominance of pico and nanophytoplankton in the HNLC regions dominated by smaller phytoplankton and lower amplitude blooms, would have shorter food chains than iron limited regions, indicated by large microphytoplankton and large amplitude blooms, would have shorter food chains than iron limited regions dominated by smaller phytoplankton and lower amplitude blooms. The dominance of pico and nanophytoplankton in the HNLC regions dominated by smaller phytoplankton and lower amplitude blooms, would have shorter food chains than iron limited regions, indicated by large microphytoplankton and large amplitude blooms, would have shorter food chains than iron limited regions dominated by smaller phytoplankton and lower amplitude blooms. The dominance of pico and nanophytoplankton in the HNLC regions dominated by smaller phytoplankton and lower amplitude blooms, would have shorter food chains than iron limited regions, indicated by large microphytoplankton and large amplitude blooms, would have shorter food chains than iron limited regions dominated by smaller phytoplankton and lower amplitude blooms. The dominance of pico and nanophytoplankton in the HNLC regions dominated by smaller phytoplankton and lower amplitude blooms, would have shorter food chains than iron limited regions, indicated by large microphytoplankton and large amplitude blooms, would have shorter food chains than iron limited regions dominated by smaller phytoplankton and lower amplitude blooms. The dominance of pico and nanophytoplankton in the HNLC regions dominated by smaller phytoplankton and lower amplitude blooms, would have shorter food chains than iron limited regions, indicated by large microphytoplankton and large amplitude blooms, would have shorter food chains than iron limited regions dominated by smaller phytoplankton and lower amplitude blooms. The dominance of pico and nanophytoplankton in the HNLC regions dominated by smaller phytoplankton and lower amplitude blooms, would have shorter food chains than iron limited regions, indicated by large microphytoplankton and large amplitude blooms, would have shorter food chains than iron limited regions dominated by smaller phytoplankton and lower amplitude blooms. The dominance of pico and nanophytoplankton in the HNLC regions dominated by smaller phytoplankton and lower amplitude blooms, would have shorter food chains than iron limited regions, indicated by large microphytoplankton and large amplitude blooms, would have shorter food chains than iron limited regions dominated by smaller phytoplankton and lower amplitude blooms. The dominance of pico and nanophytoplankton in the HNLC regions dominated by smaller phytoplankton and lower amplitude blooms, would have shorter food chains than iron limited regions, indicated by large microphytoplankton and large amplitude blooms, would have shorter food chains than iron limited regions.
food web.

5. Summary

Shifts in the size structure of phytoplankton at the food web base determine trophic pathways, and the number of trophic steps leading to mesozooplankton and macrozooplankton, and by extension the efficiency of biomass transfer to higher trophic levels. We found that HNLC waters upstream of the Kerguelen plateau, dominated by pico and nanophytoplankton, had mesozooplankton/macrozooplankton communities that were > 0.6 trophic positions higher than on the naturally iron enriched plateau which supports large summer diatom blooms. Mesozooplankton/macrozooplankton in the region downstream of the plateau were intermediate in trophic position between the upstream and plateau regions, indicating the effect of iron enrichment though down-stream transport from the plateau. Food chain length was determined by the composition of and interactions between the trophic levels below microeukaryon, which were consistently ~0.6 trophic positions above meso/macrozooplankton at all stations. We suggest that the efficiency of biomass accumulation in iron enriched regions depends on the presence of large zooplankton grazers that are able to effectively consume and assimilate the eukaryons, e.g., euphausiids. We also note the high trophic diversity of lower trophic level taxa, which supports a more nuanced approach to structuring food web models, which more effectively represents the diverse functional roles of these taxa.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We thank B. Quéguiner, the PI of the MOBYDICK project, for providing us the opportunity to participate to this cruise, the chief scientist I. Obernosterer and the captain and crew of the R/V Marion Dufresne for their enthusiasm and support aboard during the MOBYDICK–THEMISTO cruise (https://doi.org/10.17600/18000403). This work was supported by the French oceanographic fleet (“fleet océanographique française”), the French ANR (“Agence Nationale de la Recherche”), AAPG 2017 program, MOBYDICK Project number: ANR-17-CE01-0013), the French Research program of INSU-CNRS LEFE/CYBER (“Les enveloppes fluides et l’environnement” – “Cycles biogéochimiques, environnement et ressources”), B. Hunt’s Natural Sciences and Engineering Research Council (NSERC) Grant No. RGPIN-2017-04499IT099, and E. Pakhomov’s NSERC Discovery Grant RGPIN-2014-01507.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jmarsys.2021.103625.

References

Meillat, M., 2012. Essais du chalut mesopelagos pour le programme MYCTO 3D-MAP de

