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A B S T R A C T   

Urban environments are evolutionarily novel and differ from natural environments in many respects including 
food and/or water availability, predation, noise, light, air quality, pathogens, biodiversity, and temperature. The 
success of organisms in urban environments requires physiological plasticity and adjustments that have been 
described extensively, including in birds residing in geographically and climatically diverse regions. These 
studies have revealed a few relatively consistent differences between urban and non-urban conspecifics. For 
example, seasonally breeding urban birds often develop their reproductive system earlier than non-urban birds, 
perhaps in response to more abundant trophic resources. In most instances, however, analyses of existing data 
indicate no general pattern distinguishing urban and non-urban birds. It is, for instance, often hypothesized that 
urban environments are stressful, yet the activity of the hypothalamus-pituitary-adrenal axis does not differ 
consistently between urban and non-urban birds. A similar conclusion is reached by comparing blood indices of 
metabolism. The origin of these disparities remains poorly understood, partly because many studies are 
correlative rather than aiming at establishing causality, which effectively limits our ability to formulate specific 
hypotheses regarding the impacts of urbanization on wildlife. We suggest that future research will benefit from 
prioritizing mechanistic approaches to identify environmental factors that shape the phenotypic responses of 
organisms to urbanization and the neuroendocrine and metabolic bases of these responses. Further, it will be 
critical to elucidate whether factors affect these responses (a) cumulatively or synergistically; and (b) differen-
tially as a function of age, sex, reproductive status, season, and mobility within the urban environment. Research 
to date has used various taxa that differ greatly not only phylogenetically, but also with regard to ecological 
requirements, social systems, propensity to consume anthropogenic food, and behavioral responses to human 
presence. Researchers may instead benefit from standardizing approaches to examine a small number of 
representative models with wide geographic distribution and that occupy diverse urban ecosystems.   

1. How animals persist in urban environments: the importance 
of endocrine flexibility 

The human population has increased to an unprecedented extent 
over the last century and this has been accompanied by a massive exodus 
of rural human populations towards urban areas (United Nations, 2020). 
Indeed, half of humans now live in cities and this phenomenon is ex-
pected to increase until the end of the 21st century. The increase in urban 
human populations has been accompanied by a rapid urban sprawl and 
massive environmental changes (McKinney, 2002). These environ-
mental changes are multiple, rapid, and often drastic, and cities repre-
sent the most modified environment on Earth (Grimm et al., 2008). 
Urbanization-associated environmental changes strongly impact 

biodiversity in general, and that of wild vertebrates in particular (Chace 
and Walsh, 2006; Grimm et al., 2008). Whereas urban environments are 
often host to a similar abundance and diversity of arthropods as 
compared to managed agricultural areas (Turrini and Knop, 2015), 
urban vertebrate biodiversity is usually impoverished (Gil and Brumm, 
2014; McKinney, 2006) because most vertebrate species are unable to 
live in this environment (urban avoiders, Blair, 1996; Fischer et al., 
2015). However, some vertebrate species can adjust to cities (urban 
adapters) and a few even thrive in the urban environment (urban ex-
ploiters, Blair, 1996; Fischer et al., 2015). There is increasing evidence 
that phenotypic plasticity, defined as the ability for environmental 
conditions to produce varying phenotypes from an individual genotype 
(Pigliucci, 2001), combined with microevolutionary processes are 
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important drivers of the ability of species and individuals to adjust to the 
urban environment (Lowry et al., 2013; Miranda et al., 2013; Thompson 
et al., 2021). Indeed, urban-related environmental changes are so fast 
and intense that they may limit the ability of urban avoiders to adapt to 
an urban way of life through selection processes. This may be the case 
especially of species with long generation times, such as most verte-
brates. Therefore, phenotypic plasticity is arguably a crucial component 
to allow species to persist in the urban environment and for evolution to 
then act to further adapt species to urbanization (the concept of “buying 
time”, Diamond and Martin, 2021). 

Endocrine mechanisms are crucial to determining whether a species 
is likely to persist in the urban environment. Indeed, these mechanisms 
are recognized as key mediators of the behavioral and physiological 
response to environmental changes (Ricklefs and Wikelski, 2002). They 
are, therefore, tightly linked to phenotypic plasticity (Hau and Goy-
mann, 2015), and endocrine flexibility is thought to be a requisite to 
adapt to changes (Angelier and Wingfield, 2013; Taff and Vitousek, 
2016). In addition, the functioning of endocrine mechanisms is often 
repeatable within individuals (Taff et al., 2018; Fanson and Biro, 2019) 
and somewhat heritable (e.g., Evans et al., 2006; Jenkins et al., 2014), 
making them likely targets for evolutionary processes in urban envi-
ronments in the longer term. As the functioning of endocrine mecha-
nisms can substantially vary between species (e.g., Romero and 
Gormally, 2019), interspecific differences in this functioning may 
explain the ability of some species to persist in urban settings. 

Urban environments are often more stable than rural areas as envi-
ronmental fluctuations are buffered (Ibáñez-Álamo et al., 2020). For 
example, urban areas are typically warmer than surrounding rural en-
vironments and may thus provide a buffer against cold temperatures 
(Shochat et al., 2006). Similarly, in hot climates misting systems can 
lower ambient temperatures and watering systems create artificial pre-
cipitation (Shochat et al., 2006). Food availability is also more pre-
dictable in urban environments (Shochat et al., 2006). Thus, it is not 
surprising that a review conducted by Bonier (2012) found “no clear or 
consistent patterns” in the endocrine responses of birds to urbanization. 
At that time, the authors recommended stronger research approaches to 
examine this relationship between and within bird taxa around the 
world (Bonier, 2012). Based on analyses of the literature that we present 
here, this remains an important call for research as inconsistencies in 
findings hamper efforts to form generalizations. While many biomarkers 
have been targeted to evaluate the influence of urbanization on indi-
vidual birds (Table 1), most studies on this topic have not examined the 
relationship between these biomarkers and avian endocrine physiology 
in an urban context. Instead, most studies to date have compared hor-
monal levels between urban and non-urban populations without 
necessarily linking these hormonal levels to specific urban-related 
environmental modifications. In this review, we, therefore, present 
these biomarkers and highlight studies that have examined this link. 

2. What are the most studied endocrine axes in urban-related 
research? 

Several ecophysiological studies have investigated the endocrine 
response of vertebrates to urban challenges. The objectives of these 
studies were primarily to evaluate the impact of urbanization on the 
health of wild vertebrates and to test whether specific traits were 
necessary to cope with an urban way of life. Perhaps the most-often 
studied impact of urbanization on the endocrine physiology of wild 
birds is the glucocorticoid stress response (Table 2). Evidence exists that 
is consistent with the hypothesis that this response is related to coloni-
zation of new (potentially including urban) habitats. For example, house 
sparrows (Passer domesticus) - a species that is typically associated with 
human-modified environments - have undergone rapid range extension 
from initial introduction sites in some regions of Kenya. During the 
breeding season, sparrows at the edge of their range had a stronger 
corticosterone (CORT) response to acute stress than those at initial 

Table 1 
Published parameters used to measure the impact of urbanization on avian 
species.  

Published parameters 
used to assess the 
effects of urbanization 
on birds 

Examples References 

Behavior territorial behavior and 
aggression, object 
neophobia, exploratory 
behavior 

Atwell et al., 2012;  
Davies et al., 2018;  
Fokidis et al., 2011a;  
Grunst et al., 2019;  
Mueller et al., 2013;  
Riyahi et al., 2015 

Biochemistry, Gene 
expression, 
Morphology, 
Physiology 

blood biochemistry: 
heterophil/lymphocyte (H/ 
L) ratio, anucleated red 
blood cells (RBC), 
protoporphyrin, 
methemoglobin, RBC, white 
blood cells (WBC) 

Bauerová et al., 2017;  
Burger and Gochfeld, 
1997; Sicolo et al., 2009; 
Suárez-Rodríguez and 
Garcia, 2014 

body condition, bone 
mineral density 

Davies et al., 2013, 
2015a; Foltz et al., 2015; 
Giraudeau et al., 2014;  
Grunst et al., 2020b;  
Heiss et al., 2009;  
Injaian et al., 2018;  
Jimenez-Penuela et al., 
2019; McGraw et al., 
2020; McNew et al., 
2017; Nebel et al., 2020; 
Ots and Hõrak, 1998;  
Plourde et al., 2013;  
Sriram et al., 2018 

circadian, circannual Davies et al., 2015a;  
Dominoni et al., 2013;  
Partecke et al., 2004;  
Renthlei et al., 2020, 
2021; Renthlei and 
Trivedi, 2019; Zhang 
et al., 2014 

coloration, pigmentation, 
preen gland size 

Giraudeau et al., 2017;  
Grunst et al., 2020a;  
Horak et al., 2001;  
Isaksson et al., 2005 

gene expression, 
epigenetics, RBC 
micronucleus, anucleated 
RBCs, telomeres, 
transcription 

Andrew et al., 2019;  
Baesse et al., 2015, 2019; 
Blanco-Peña et al., 2017; 
Brewer et al., 2020;  
Ceyca-Contreras et al., 
2020; Delaney et al., 
2010; Evans et al., 2009; 
Giraudeau et al., 2020;  
Goncalves et al., 2020;  
Grunst et al., 2020b;  
Ibáñez-Álamo et al., 
2018; Low et al., 2018;  
McNew et al., 2017;  
Meillère et al., 2015a;  
Morakchi et al., 2017;  
Mueller et al., 2013, 
2018, 2020; Ouyang 
et al., 2019; Renthlei 
et al., 2020, 2021;  
Riyahi et al., 2015;  
Salmón et al., 2021; Tan 
et al., 2018; Watson 
et al., 2017, 2020; Zhang 
et al., 2013 

gut microbiome Teyssier et al., 2020 
oxidative stress and 
antioxidants 

Giraudeau and McGraw, 
2014; Giraudeau et al., 
2014; Herrera-Duenas 
et al., 2014; Isaksson 
et al., 2005, 2009 

reproduction and nestlings Davies et al., 2015a, 
2016a, 2018; Dominoni 
et al., 2013; Fokidis 

(continued on next page) 
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introduction sites, suggesting a relationship between CORT levels and 
the species’ ability to colonize new areas (Liebl and Martin, 2012). 
Overall, however, there is weak support for a consistent link between 
urbanization and the circulating levels of glucocorticoids in wild 

Table 1 (continued ) 

Published parameters 
used to assess the 
effects of urbanization 
on birds 

Examples References 

et al., 2011b; Fritsch 
et al., 2019; Morrissey 
et al., 2014; Partecke 
et al., 2004; Rowse et al., 
2014; Russ et al., 2015;  
Schoech et al., 2004;  
Suárez-Rodríguez and 
Garcia, 2014; Wright 
and Fokidis, 2016;  
Zhang et al., 2014 

Infections feather microorganisms 
blood and intestinal: 
antibiotic resistant 
infections, Avian influenza, 
Botulism, Campylobacter 
jejuni, Chlamydia psittaci, 
Coccidians, Coronaviruses, 
Cryptococcus neoformans, E. 
coli, Haemoproteus, 
Haemosporidian parasites, 
Helicobacter virus, 
Hematozoa parasites, 
Leucocytozoon, 
Microsporidia; Nematodes, 
Neospora caninum, 
Newcastle disease virus, 
Plasmodium, Poxvirus, 
Salmonella, Sarcocystis, 
Toxoplasma gondii, 
Trypanosomes, West Nile 
Virus 

Afshari et al., 2012;  
Anacona et al., 2018;  
Badagliacca et al., 2018;  
Barbosa et al., 2019;  
Batalha de Jesus et al., 
2019; Bentz et al., 2006;  
Bichet et al., 2020;  
Blanco-Peña et al., 2017; 
Broomand et al., 2019; Č 
echová et al., 2016;  
Chen et al., 2015; de 
Sousa et al., 2010; Dolz 
et al., 2013; Du et al., 
2019; Fecchio et al., 
2021; Fox et al., 2006;  
Gargiulo et al., 2014;  
Geigenfeind et al., 2012;  
Gionechetti et al., 2008;  
Giraudeau et al., 2014, 
2017; Golnar et al., 
2021; Hamer et al., 
2012; Hessman et al., 
2018; Höfle et al., 2020;  
Jarma et al., 2021;  
Jimenez-Penuela et al., 
2019; Kistler et al., 
2012; Kmet et al., 2013;  
Konell et al., 2019;  
Marrow et al., 2009;  
Mattmann et al., 2019;  
McGraw et al., 2020;  
Morakchi et al., 2017;  
Naveed et al., 2019;  
Nebel et al., 2020;  
Ngaiganam et al., 2019;  
Ots and Hõrak, 1998;  
Perec-Matysiak et al., 
2017; Reisen and 
Wheeler, 2016; Ringia 
et al., 2004; Ruiz- 
Martínez et al., 2016;  
Sacristán et al., 2014;  
Schoech et al., 2004;  
Stephens et al., 2021;  
Stout et al., 2005; Urban 
et al., 2013; Weis et al., 
2014; Wink and Bennett, 
1976 

Stress baseline corticosterone 
(CORT) levels in blood or 
feathers, CORT response to 
handling, food availability/ 
predictability 

Abolins-Abols et al., 
2016; Atwell et al., 
2012; Davies et al., 
2013, 2016a, 2016b;  
Dominoni et al., 2021;  
Fokidis et al., 2009;  
Fokidis et al., 2011a;  
Foltz et al., 2015;  
Giraudeau and McGraw, 
2014; Heiss et al., 2009;  
Ibáñez-Álamo et al., 
2020; Meillère et al., 
2016; Ouyang et al., 
2019; Partecke et al., 
2006; Renthlei et al.,  

Table 1 (continued ) 

Published parameters 
used to assess the 
effects of urbanization 
on birds 

Examples References 

2021; Russ et al., 2015;  
Schoech et al., 2004;  
Weaver et al., 2018;  
Wright and Fokidis, 
2016 

thyroid Brogan et al., 2017;  
Fernie et al., 2017;  
Kobayashi et al., 2005;  
Morrissey et al., 2014;  
Renthlei et al., 2021;  
Sun et al., 2021; Técher 
et al., 2016 

CORT, corticosterone; H/L, heterophil to lymphocyte ratio; RBC, red blood cells; 
WBC, white blood cells. 

Table 2 
Some examples of the effects of urbanization on the stress physiology of birds.  

Species Stress Responses References 

Curve-billed thrashers 
(Toxostoma curvirostre), 
Tree sparrows (Passer 
montanus), House 
sparrow (Passer 
domesticus) 

Higher baseline 
corticosterone (CORT) in 
urban birds 

Fokidis et al., 2011b;  
Zhang et al. (2011);  
White et al. (2022) 

Common blackbirds 
(Turdus merula) 

Lower feather CORT in 
urban birds 

Ibáñez-Álamo et al., 
2020 

Red-winged blackbird 
nestlings (Agelaius 
phoeniceus), Northern 
cardinals (Cardinalis 
cardinalis) 

Higher and lower fecal 
CORT in urban blackbirds 
and cardinals, respectively 

Buxton et al., 2018;  
Huang et al., 2020 

Juvenile house sparrows 
(Passer domesticus), 
Common blackbirds 
(Turdus merula) 

Higher feather CORT in 
urban birds 

Beaugeard et al., 2019;  
Meillère et al., 2016 

Abert’s towhees 
(Melozone aberti), Song 
sparrows (Melospiza 
melodia), House 
sparrows (Passer 
domesticus) 

No differences in handling- 
induced CORT responses 
and/or baseline CORT 

Davies et al., 2013;  
Foltz et al., 2015;  
Meillère et al. (2015b);  
Bokony et al. (2012) 

Northern cardinals 
(Cardinalis cardinalis), 
Dark-eyed juncos 
(Junco hyemalis), 
Common blackbirds 
(Turdus merula) 

Lower baseline and/or 
handling-induced CORT 
response and behavioral 
stress response 

Abolins-Abols et al., 
2016; Partecke et al., 
2006; Wright and 
Fokidis, 2016 

House sparrows, Northern 
mockingbird (Mimus 
polyglottos), Curve- 
billed thrashers, Abert’s 
towhees, Canyon 
towhee (Melozone 
fusca) 

Similar baseline CORT; 
greater handling-induced 
CORT response 

Fokidis et al., 2009 

House finches 
(Haemorhous 
mexicanus) 

Human presence increased 
CORT, objects and captivity 
did not 

Weaver et al., 2018 

Curve-billed thrashers, 
Abert’s towhees, Song 
sparrows 

More territorial and 
agressive behavior that was 
not associated with changes 
in T or CORT 

Davies et al., 2018;  
Fokidis et al., 2010 

Dark-eyed juncos Increased boldness and 
lower CORT 

Atwell et al., 2012  
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vertebrates (Iglesias-Carrasco et al., 2020; Injaian et al., 2020; Table 2). 
Apparent discrepancies between studies may result from the complex 
relationship linking the hypothalamic pituitary adrenal (HPA) axis and 
stress (Romero and Beattie, 2022). In particular, the actions of gluco-
corticoids depend on their interactions with corticosteroid binding 
globulins (CBG; Breuner et al., 2013) and on feedback mechanisms (e.g., 
Taff et al., 2018). Furthermore, behavioral and physiological actions of 
glucocorticoids are mediated by several types of receptors (low affinity: 
glucocorticoid receptors; high affinity: mineralocorticoid receptors; 
Landys et al., 2006) whose densities are tissue-specific (e.g., Krause 
et al., 2015). In addition, glucocorticoid receptor densities are not static 
but as is commonly the case for endocrine systems, they are dynamically 
regulated. For example, these densities in some tissues change during 
chronic stress (Lattin and Romero, 2014) and seasonally (Lattin et al., 
2013; Lattin and Romero, 2015) and they may, therefore, also change in 
response to urbanization although this has rarely been investigated. To 
our knowledge, a single recent study has examined this question in song 
sparrows (Melospiza melodia) and found that urban sparrows had fewer 
hippocampal CORT receptors than rural sparrows (Lane et al., 2021). 
The extent of seasonal modulation being tissue-dependent, glucocorti-
coids have the potential to selectively influence tissue types differently 
depending on the time of the year and/or reproductive condition of the 
animal. Overall, elevated CORT levels can reflect an environmental or 
energetic constraint, but also an animal’s ability to cope successfully 
with stress. As a consequence of the above complexities, these levels 
alone are generally considered poor predictors of chronic stress (Dickens 
and Romero, 2013), especially when integrative and indirect measures 
of glucocorticoid secretion are used (i.e., feces or feathers, Romero and 
Beattie, 2022). 

Most research on the relationships between urbanization and the 
avian endocrine system has focused on the HPA axis, and much less is 
known regarding whether urbanization influences the functioning of 
other endocrine axes. For example, urbanization can affect the expres-
sion of reproductive behaviors (e.g., singing and territoriality), but few 
studies have examined whether it affects the hypothalamic-pituitary- 
gonadal (HPG) axis (e.g., Davies and Sewall, 2016; Davies et al., 
2015a, 2016a). Similarly, aside from associations with pollutants and 
pathogens, the effects of urbanization on the hypothalamus-pituitary- 
thyroid (HPT) axis have been largely ignored. In the following sec-
tions, we consider various environmental factors that can contribute to 
altering the endocrine physiology of urban birds. 

3. Factors that may influence avian endocrine physiology in 
urban environments 

3.1. Food availability – quantity and quality 

Urbanization is generally associated with dramatic qualitative and 
quantitative changes in the food resources that are available to urban- 
dwelling animals (El-Sabaawi, 2018). For example, urban vertebrates 
have access to anthropogenic food that is often more abundant but 
nutritionally inferior (e.g., energy-rich and nutrient-poor) relative to 
that available to corresponding non-urban animals (Coogan et al., 
2018). In addition, food availability in urban areas can be reduced due 
to intra- and inter-specific competition for food resources (Shochat et al., 
2004). Food resources can also be affected by chemical pollution and 
urban landscape structure (e.g., percentage of impervious surface), 
which affects some groups of invertebrates more than others and so has 
the potential to qualitatively alter the diet of organisms that depend on 
these invertebrates as main food source (Evans et al., 2018). A main 
challenge of field studies on this subject, however, is to distinguish be-
tween effects resulting from dietary differences vs. exposure to pollut-
ants (Morrissey et al., 2014). Inversely, urbanization can in some cases 
facilitate access to food resources. For instance, one of the biological 
function-disrupting effects of artificial light at night (Boyes et al., 2021; 
Grubisic and van Grunsven, 2021) is to attract nocturnal insects that as a 

result, may increase foraging opportunities for some insectivorous spe-
cies (Rodríguez et al., 2021). 

Multiple studies have investigated relationships between food 
availability (quality and quantity), whether provided intentionally or 
not intentionally, and the avian endocrine system, and several of these 
studies have been conducted in an urban context. Food supplementation 
(i.e., food for birds) to rural (“wildland”) Florida scrub-jays (Aphelocoma 
coerulescens) is associated with earlier breeding as well as lower CORT in 
both sexes, and with higher plasma testosterone in males but no change 
in plasma estradiol in females (Schoech et al., 2004). In this species, food 
supplementation to suburban birds also results in earlier breeding and 
lower plasma CORT relative to jays inhabiting natural habitats 
(Schoech, 2009). These effects of food availability on the timing of 
breeding could be mediated by CORT and its effects on the HPG axis 
(Lattin et al., 2016), a hypothesis that is supported by the observation 
that early-breeding supplemented jays had lower plasma CORT than 
control birds (Schoech, 2009). The generality of these findings is, 
however, not established because in the male northern cardinal (Car-
dinalis cardinalis), food supplementation did not impact dehydroepian-
drosterone (DHEA) or CORT concentrations (Wright and Fokidis, 2016). 
Other studies did likewise not identify an unambiguous link between 
food supplementation and endocrine axes in birds. For example, Davies 
et al. (2016a) found no differences in either hypothalamic (gonado-
tropin releasing and inhibitory hormones, GnRH and GnIH) or plasma 
(testosterone (T) and luteinizing hormone (LH)) hormones between 
urban and rural Abert’s towhees (Melozone aberti). Rather, in this species 
seasonal testicular growth occurred earlier in urban birds, but this dif-
ference was not associated with food abundance, which did not differ 
between locations (Davies et al., 2016a). Heiss et al. (2009) also found in 
suburban American crows (Corvus brachyrhynchos) that food supple-
mentation resulted in larger nestlings, but CORT concentrations did not 
differ in urban and rural nestlings. These studies illustrate the need for 
additional research aimed at clarifying functional relationships between 
the HPA axis and the reproductive system in situations of fluctuating 
food abundance. 

In contrast to food supplementation, food restriction can decrease 
the HPG axis activity (Hahn, 1995; O’Brien and Hau, 2005; Perfito et al., 
2008; Davies et al., 2015b; Valle et al., 2015, 2019, 2020). This decrease 
appears to result from effects at multiple levels including the hypo-
thalamus and gonads (Davies et al., 2015b; Valle et al., 2015, 2020), but 
the mechanisms by which nutritional signals influence the reproductive 
system of wild birds remain poorly understood. Indeed, food restriction 
may inhibit reproductive functions by decreasing the animal’s overall 
energy stores and thereby disrupting energy homeostasis. Alternatively, 
and/or additionally, food restriction may limit the availability of spe-
cific metabolic substrates and interfere with the activity of specific 
metabolic pathways, such as those involved in gonadal steroidogenesis 
(Valle et al., 2020). 

Urban birds often have access to relatively abundant food in the form 
of handouts, refuse, pet food, etc., but anthropogenic food generally is of 
lower nutritional quality than natural food (Coogan et al., 2018). Sur-
prisingly, however, most experimental endocrine research on wild birds 
to date has manipulated the food abundance while ignoring the food 
composition, even though tantalizing cues indicate the potentially 
important physiological role of the latter. For example, free-living 
Florida Scrub-Jays with access to high fat and high protein food sup-
plement had lower plasma CORT either than birds with access to high fat 
and low protein food supplement or than non-supplemented (control) 
jays (Schoech et al., 2004). The result of a study on captive white ibis 
(Endocimus albus) nestlings receiving an anthropogenic diet (addition of 
white bread and reduction in seafood content) suggested that this diet 
decreases the birds’ ability to fight pathogens (Cummings et al., 2019). 
Finally, captive mourning doves (Zanaida macroura) from a wild popu-
lation that were fed white bread for four weeks had elevated hepatic 
glycogen but did not differ from control doves with regard to their 
plasma glucose and other indicators of metabolic physiology (Basile 
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et al., 2020). These studies vividly illustrate the potential for anthro-
pogenic food to disrupt physiological homeostasis, but also highlight 
how underexplored this topic is despite its relevance to our under-
standing of the consequences of urbanization to avian populations. 

The gut microbiome is increasingly recognized as a significant 
contributor to the health of wild vertebrates (Bodawatta et al., 2022). 
Interestingly, a few studies found that urbanization can affect the gut 
microbiome of wild birds and mammals (e.g., Berlow et al., 2021). For 
example, the gut microbiome of urban house sparrows is less diverse 
than that of rural sparrows (Teyssier et al., 2020), and urban sparrows 
host a greater abundance of Proteobacteria, which are associated with 
illnesses (Gadau et al., 2019). However, few studies have examined the 
gut microbiome of urban birds with a focus specifically on diet or 
endocrine physiology (Stothart et al., 2019). Nogeura et al. (2018) 
administered CORT to yellow-legged gull (Larus michahellis) chicks and 
found that this treatment decreases the abundance of pathogenic gut 
bacteria, suggesting that elevated CORT may reduce the risk of infec-
tion. Despite these recent and significant advances, our current knowl-
edge of the link between endocrine traits and gut microbiota is scarce 
and future studies are definitely needed to better understand how the 
functioning of endocrine axes and gut microbiome are inter-connected. 

3.2. Water availability 

Few data are available to assess whether urbanization affects water 
availability to wild birds. On the one hand, urban areas, in particular 
those in arid regions, can be associated with year-round water sources 
such as fountains, urban ponds, and remaining water in gutters (Larson 
and Perrings, 2013). Such water availability can have a cooling effect by 
decreasing surface temperature (e.g., Wang et al., 2021), and it may 
benefit urban birds (i.e., decreased thermoregulatory cost) during pe-
riods of intense heat. On the other hand, impervious surfaces absorb 
solar radiation and, combined with the urban heat island effect (section 
3.6), this may increase evaporation and water runoff leading to a quick 
disappearance of water sources in urban areas (Arnfield, 2003). The 
influence of water availability on the endocrine physiology of birds has 
been rarely investigated, especially in the context of urbanization. In a 
few studies examining avian hormonal levels of urban birds in a desert 
area, water has been suggested to potentially explain differences be-
tween rural and urban birds (Fokidis et al., 2009). Recently, Brischoux 
et al. (2020) found in captive house sparrows that a short period (~ 6 h 
during daylight time) of water restriction can result in increased base-
line CORT levels. Other studies reported that water restriction can also 
disrupt reproduction and reduce circulating LH and testosterone levels 
in zebra finches (Taeniopygia guttata; Perfito et al., 2006; Prior et al., 
2013). Similarly, the absence of bathing water can affect circulating 
hormone levels that are linked to stress (increased CORT levels, Krause 
and Ruploh, 2016) or reproduction (e.g., LH, Wingfield et al., 2012). 
Some of these results may be specific to zebra finches, a desert-adapted 
species, but the studies emphasize that water availability should be 
considered when comparing hormonal titers between urban and rural 
bird populations. 

3.3. Light and noise pollution 

Birds rely heavily on light cues to regulate their circadian and cir-
cannual rhythms (Cassone and Westneat, 2012). For this reason, much 
attention has focused on the potential endocrine-disrupting effects of 
artificial light at night (ALAN) in birds (Table 3). Similar to light, city 
noises have attracted the attention of scientists because singing is 
regulated by the endocrine system and urban noise may alter the way 
birds vocally communicate with each other (Slabbekoorn and den Boer- 
Visser, 2006): Noisy environments may require birds to change their 
song or to sing at a higher frequency in order to be heard by conspecifics 
(Nemeth and Brumm, 2009; Luther and Baptista, 2010). Furthermore, 
birds in different neighborhoods have different ‘dialects’ whereas songs 

Table 3 
Effects of light, noise, and EMF pollution on endocrine responses in wild birds.  

Urban stressor Species Endocrine outcomes References 

Artificial light at 
night (ALAN) 

Tree sparrows 
(Passer 
montanus) and 
Great tits (Parus 
major)  

• Tree sparrows: 
advances luteinizing 
hormone (LH) 
secretion  

• Tree sparrows: lower 
peak LH, estradiol 
(E2), and 
testosterone (T)  

• Sparrows and great 
tits: lower melatonin 
and/or pineal gland 
AANAT gene 
expression (synthesis 
of melatonin) 

Renthlei and 
Trivedi, 2019;  
Zhang et al., 
2014; Ziegler 
et al., 2021 

Great tits  • More active at night Ouyang et al., 
2017 

Great tits  • increased mRNA 
transcripts related to 
germ cell 
development, testes 
growth, and steroid 
synthesis  

• larger testes and 
upregulated 
spermatogenesis 

Dominoni 
et al., 2018 

Great tit 
nestlings  

• higher feather 
corticosterone 
(CORT)  

• not associated with 
telomere length or 
fledgling success 

Grunst et al., 
2020c 

Blue tit 
nestlings 
(Cyanistes 
caeruleus)  

• Urban: higher 
feather CORT with 
ALAN; positively 
associated with 
fledgling success  

• Rural: higher overall 
plasma CORT than 
urban birds 
(irrespective of 
ALAN); lower 
feather CORT with 
ALAN 

Dominoni 
et al., 2021 

European 
blackbirds 
(Turdus merula)  

• Advanced 
reproductive 
development and 
molting  

• Females: Positively 
correlated with 
CORT and negatively 
with E2  

• Males: No 
association with T 

Dominoni 
et al., 2013;  
Russ et al., 
2015  

Tree swallow 
nestlings 
(Tachycineta 
bicolor)  

• No change in body 
condition or 
fledgling success 

Injaian et al., 
2021  

Zebra finches 
(Taenopygia 
guttata)  

• more active at night  
• elevated CORT  
• no change in body 

condition or food 
intake 

Alaasam et al., 
2018  

Zebra finches 
(Taenopygia 
guttata)  

• loss of normal 
pattern of circulating 
CORT, cytokine, and 
melatonin 
concentrations 

Mishra et al., 
2019; Moaraf 
et al., 2020a, 
2020b, 2021 

Noise Black swans 
(Cyngus atratus)  

• Annual Formula One 
Grand Prix: Higher 
baseline CORT prior 
to event and 
decreased during 
event; Handling- 

Payne et al., 
2012 

(continued on next page) 
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vary less in rural environments (Luther and Baptista, 2010). Urban noise 
and ALAN can also affect multiple stress-coping endocrine mechanisms 
because these types of pollution can be perceived as stressful by animals 
living in the urban environment (e.g., noise, Davies et al., 2017; 
Angelier, 2022; light: Dominoni et al., 2021). 

Some evidence appears to point towards altered endocrine physi-
ology in urban birds exposed to environmental disturbances (Table 1). 
However, a comprehensive review conducted by Injaian et al. (2020) 
found no general pattern between plasma CORT and urban character-
istics such as noise, roadways, human presence, ALAN, and level of ur-
banization. In addition, Foltz et al. (2015) found no clear effects of 
habitat alone on body condition in a 4-year longitudinal study of song 
sparrows. Casasole et al. (2017) additionally found no relationship be-
tween measures of oxidative stress and road pollution, anthropogenic 
noise, or ALAN in great tit (Parus major) nestlings. In fact, the amount of 
oxidative stress varied more within nestlings in a nest as opposed to 
between nests (Casasole et al., 2017). Much of the research on the effects 
of ALAN, however, has involved experimental manipulations of ALAN 
exposure, which may have limited relevance to urban settings wherein 
birds may have a choice regarding exposure levels. In fact, when given a 
choice, both urban and forest great tits chose to sleep under ALAN 
instead of in darkness (Ulgezen et al., 2019). 

Experimental exposure of urban blue tit (Cyanistes caeruleus) as well 

as great tit nestlings to ALAN after hatching increased feather CORT 
(Dominoni et al., 2021; Grunst et al., 2020c), whereas a reduction in 
feather CORT was seen when rural blue tit nestlings were exposed to 
ALAN (Dominoni et al., 2021). Rural blue tit nestlings additionally had 
higher circulating CORT concentrations regardless of ALAN exposure 
(Dominoni et al., 2021). Similarly, Injaian et al. (2021) concluded that 
ALAN exposure did not have negative effects on tree swallow (Tachy-
cineta bicolor) nestlings as it did not alter body condition or fledging 
success. Other studies illustrate the diversity of relationships between 
ALAN and the avian endocrine system. Zebra finches exposed to ALAN 
had altered eating patterns, lower melatonin, and higher glucose at 
nighttime, along with lower circulating thyroxine (T4) and triglycerides 
during the daytime (Batra et al., 2019). Furthermore, in this species the 
normal nocturnal pattern of melatonin and diel pattern of CORT secre-
tion were lost in response to ALAN exposure (Mishra et al., 2019; Moaraf 
et al., 2020a, 2020b, 2021). Zebra finches exposed to light in the blue 
range (5000 K) were more active at night and had elevated CORT 
although body condition and food intake were not altered (Alaasam 
et al., 2018). Similarly, Indian house crows (Corvus splendens) exposed to 
ALAN developed sleep loss, reduced melatonin, and depressive-like 
symptoms, although changes in diurnal CORT were not observed 
(Taufique et al., 2018). Adult great tits exposed to white light at night 
were more active at night and more likely to be infected with malaria 
(Ouyang et al., 2017). In contrast, Saini et al. (2019) observed an in-
crease in plasma bactericidal activity against E. coli. Dominoni et al. 
(2018) found that exposure to ALAN altered mRNA transcripts including 
increases in mRNA related to germ cell development, testis growth, and 
steroid synthesis consistent with larger testes and upregulated sper-
matogenesis, suggesting that ALAN affects the HPG axis. Supporting this 
hypothesis, ALAN was associated with activation of the reproductive 
endocrine axis (GnRH transcription, LH, and estradiol levels) in Eurasian 
tree sparrows (Passer montanus), although this effect was reversed after 
exposure to high-intensity ALAN (Zhang et al., 2019). Although studies 
of mammals show a decline in oxalate concentrations with sleep debt, 
great tit nestlings instead showed a rise in oxalate in response to ALAN 
exposure, again suggesting that the effects of ALAN in birds may not be 
comparable to those in mammals (Raap et al., 2018). 

Urban noise can affect reproductive behavior, such as the timing and 
intensity of singing (e.g., Brumm, 2004), or territoriality in birds (e.g., 
Fokidis et al., 2011a). Limited information indicates that it can also 
affect aspects of avian reproduction (Table 3). For example, zebra finch 
nestlings exposed to traffic noise weighed less than controls (Zollinger 
et al., 2019). A negative effect of noise exposure on reproduction was 
also found in the ash-throated flycatcher (Myiarchus cinerascens), in 
which exposure of nests to noise led to nest abandonment (Mulholland 
et al., 2018). In contrast, exposing western bluebird (Sialis mexicana) 
nests to traffic noise did not affect clutch or brood size, fledgling 
numbers, or nest success (Mulholland et al., 2018). Overall, the link 
between urban noise and the reproductive endocrine axis remains 
understudied and poorly understood. 

Little information is also available about relationships between 
ambient noise and the CORT stress response. The meta-analysis by 
Injaian et al. (2020) did not report any strong link between these vari-
ables. Similarly, Angelier et al. (2016) found no changes in body con-
dition, growth, fledging success, or CORT responses in an urban 
exploiter, the house sparrow, experimentally exposed to traffic noise. 
Likewise, while black swans (Cygnus atratus) had higher baseline CORT 
prior to a Formula One Grand Prix event, levels actually decreased 
during the event, although handling-induced CORT peaked at this time 
(Payne et al., 2012). And while urban adult house wrens (Troglodytes 
aedon) had higher baseline CORT than rural birds, exposure to traffic or 
pink noise had no effect on circulating CORT in urban birds, but 
increased the hormone levels in rural birds (Davies et al., 2017). Studies 
on the effects of noise exposure on circulating CORT in young birds also 
yielded conflicting results. On the one hand, Kleist et al. (2018) reported 
that chronic anthropogenic noise was associated with reduced baseline 

Table 3 (continued ) 

Urban stressor Species Endocrine outcomes References 

induced CORT 
peaked during event 

Tree swallows  • Traffic noise: 
negative correlation 
with handling- 
induced CORT in 
adult females; posi-
tive association with 
baseline CORT and 
negative association 
with body condition 
in nestlings 

Injaian et al., 
2018 

Adult house 
wrens 
(Troglodytes 
aedon)  

• Higher baseline 
CORT in urban than 
rural birds  

• urban: noise had no 
effect on circulating 
CORT  

• Rural: CORT 
increased with noise 
exposure 

Davies et al., 
2017 

House sparrows 
(Passer 
domesticus)  

• No changes in body 
condition, growth, 
fledgling success, or 
CORT responses 

Angelier et al., 
2016 

Japanese quail 
(Coturnix 
coturnix 
japonica) chicks  

• No significant effect 
on CORT stress 
response 

Flores et al., 
2019 

Western 
bluebird (Sialis 
mexicana)  

• No effect on clutch 
or brood size, 
fledgling numbers, 
or nest success 

Mulholland 
et al., 2018 

Zebra finches 
(Taenopygia 
guttata)  

• Breeding birds: 
lower baseline CORT 
with noise  

• Nestlings: reduced 
body mass 

Zollinger et al., 
2019 

Electromagnetic 
Fields (EMF) 

Various  • Inconsistent changes 
in behavior, 
reproductive 
success, 
endocrinology, 
growth and 
development 

For review:  
Fernie and 
Reynolds, 2005 

ALAN, artificial light at night; CORT, corticosterone; E2, estradiol; LH, lutei-
nizing hormone; T, testosterone. 
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CORT levels in the chicks of multiple urban species. Interestingly, they 
also found that the CORT stress response of these chicks increased in 
response to such noise, suggesting that noise can have complex effects 
on the HPA axis. On the other hand, Flores et al. (2019) found no effect 
of exposing Japanese quail (Coturnix coturnix japonica) chicks to traffic 
noise on stress responses. However, exposed birds had higher gluta-
thione levels, suggesting upregulated antioxidant defenses. To our 
knowledge, the impact of urban noise on other endocrine systems has 
rarely been investigated. A few studies have shown that urban noise 
could affect whole-organism metabolism (Brischoux et al., 2017), which 
is tightly linked to the HPT axis activity (Chastel et al., 2003). These 
topics certainly represent promising research avenues for future studies. 
Together, the lack of consistent relationships between what we would 
consider anthropogenic stressors and physiological stress responses in 
birds (Casasole et al., 2017; Foltz et al., 2015; Injaian et al., 2020) 
suggests that birds adapted to life in urban areas may be quite resilient. 

3.4. Electromagnetic fields 

Organisms residing in urban environments are continuously exposed 
to electromagnetic fields (EMF) generated by electrical lines, radio and 
personal communication devices, and other forms of technology. Access 
to power lines, electrical towers, and poles is useful to birds in terms of 
providing structures on which to perch, nest, and hunt. However, uti-
lization of these structures exposes birds to EMFs (Fernie and Reynolds, 
2005), and there is evidence for detrimental effects of this exposure 
(Table 3). For example, EMF exposure in birds generally lowers their 
melatonin secretion, which may affect circadian as well as circannual 
rhythms (Fernie and Reynolds, 2005). In the American kestrel (Falco 
sparverius), EMF exposure caused changes in reproductive behaviors, 
although not in egg laying or clutch size (Fernie et al., 2000). In another 
study, experimental exposure of turkeys (Meleagris gallopavo) to 
extremely low frequency EMF reduced norepinephrine activation of the 
β-adrenoceptor (Laszlo et al., 2018). Besides secreting melatonin, the 
avian pineal gland functions as a magnetic sensor for navigation 
(Demaine and Semm, 1985). Thus, exposure to EMF in birds has the 
potential to disrupt multiple behavioral and physiological processes 
(Demaine and Semm, 1985; Kishkinev et al., 2021; Balmori, 2021). 
Mammalian studies also show the potential for negative effects of EMF 
exposure, which can alter cellular function through several mechanisms: 
Increased calcium influx into cells, inhibition of cell growth and pro-
liferation, elevated oxidative stress, DNA damage, and misfolding of 
proteins (Gye and Park, 2012). In mammals, EMF exposure can also 
impact the release of melatonin from the pineal gland, which can in turn 
alter gonadotropin release and function (Gye and Park, 2012). As 
reviewed by Fernie and Reynolds (2005), a majority of avian studies at 
the time concerned adverse effects of EMF exposure on growth and 
development, and few studies had investigated relationships between 
this exposure and endocrine systems. Given the relatively few current 
studies examining the effects of EMF on the endocrine physiology of 
birds and that many urban species are likely exposed to EMF, much 
research is needed in this area. 

3.5. Chemical pollution and toxins 

In recent years, there has been an intense focus on assessing bio-
markers of avian exposure to urban environmental pollutants including 
heavy metals, flame retardants, chemicals, and pesticides (Table 4). 
While some urban pollutants, such as cigarette butts, may offer benefits 
in the form of warding off ectoparasites (Suárez-Rodríguez and Garcia, 
2014), others have been shown to harm the endocrine physiology of 
urban birds. As evidenced in Table 4, many studies show that heavy 
metals are found at higher concentrations in birds captured from urban 
areas. Some studies have shown an association between the amount of 
heavy metals found in birds and traffic or leaded gasoline (Schilderman 
et al., 1997) as well as air pollution (Grunst et al., 2020a) and 

contamination of food sources, such as earthworms (Scheifler et al., 
2006). For insectivorous and carnivorous species such as Anna’s hum-
mingbirds (Calypte anna), black-chinned hummingbirds (Archolochus 
alexandri), vultures (Gyps bengalensis), barn owls (Tyto alba), and red- 
tailed hawks (Buteo jamaicensis), consumption of prey exposed to pes-
ticides and rodenticides may contribute to higher levels of these chem-
icals in urban animals (Huang et al., 2016; Nair and Pillai, 1992; 
Okoniewski et al., 2021). Studies of common eiders (Somateria mollis-
sima) in the Norwegian Oslofjord demonstrate the birds are exposed to 
marine pollution (Thorstensen et al., 2021). Erythroplastids, an indica-
tor of pollution damage, are also more prevalent in helmeted manakins 
(Antilophia galeata) living in close proximity to urbanized areas in Brazil 
(Goncalves et al., 2020). 

To date, the potential impact of these multiple contaminants on the 
endocrine systems of urban birds is relatively overlooked. Table 4 pre-
sents some evidence regarding the relationship between heavy metal 
exposure and endocrine physiology of wild birds. Whereas experimental 
exposure of birds to lead or zinc did not alter CORT, prolactin, or 
testosterone-mediated behaviors (Chatelain et al., 2018), heavy metals 
are associated with increased hematopoiesis in great tits (Bauerová 
et al., 2017) and with changes in circulating hormonal levels in other 
studies. For example, there is some evidence that lead can affect the 
functioning of the HPA axis in birds (Angelier, 2022) with increased 
CORT levels in contaminated urban birds (feather CORT levels: Meillère 
et al., 2016; stress-induced plasma CORT levels: Baos et al., 2006). In 
contrast, PCBs (polychlorinated biphenyl) and PDBE (polybrominated 
diphenyl ether) chemicals have been negatively associated with thyroid 
hormone concentrations in Cooper’s hawks (Accipiter cooperii; Brogan 
et al., 2017) and Eurasian dippers (Cinclus cinclus; Morrissey et al., 
2014). Inversely, various PFAA (perfluoroalkyl acid) chemicals have 
been associated with increased thyroid gland activity in peregrine fal-
cons (Falco peregrinus; Sun et al., 2021) and dioxins have been shown to 
alter thyroid gland histology in wild jungle crows (Corvus macro-
rhynchos) in urban areas (Kobayashi et al., 2005). Further field and 
experimental studies are required to better understand not only the 
disruption of these endocrine axes resulting from exposure to urban 
contaminants, but also the fitness consequences of this exposure. 

Because environmental pollutants can induce oxidative stress, 
several studies have examined diverse measures of oxidative status in 
urban birds. One study showed no differences in oxidized lipoproteins 
(TBARS) between urban and rural great tits (Isaksson et al., 2009), but 
another study by the same researchers found a higher ratio of oxidized to 
reduced glutathione in urban great tits, an indication of oxidative stress 
(Isaksson et al., 2005). Isaksson et al. (2009) also measured higher levels 
of antioxidants in urban than rural great tits, which may protect urban 
birds from oxidative stress. In contrast, Herrera-Duenas et al. (2014) 
measured reductions in total antioxidant capacity and hemoglobin 
concentrations in urban house sparrows. Similarly, a study of house 
finches found decreased carotenoids in urban birds (Giraudeau and 
McGraw, 2014). Oxidative stress and dietary antioxidants may alter 
avian endocrine responses. For example, supplementing European 
starlings (Sturnus vulgaris) with anthocyanin-enriched food attenuated 
post-flight elevations in CORT compared to control birds (Casagrande 
et al., 2020). Haussmann et al. (2012) administered CORT to domestic 
chicks (Gallus domesticus) in ovo and found that CORT-treated chicks had 
higher levels of oxidative stress and shorter telomeres, indicative of 
higher mortality risk, as compared to untreated birds. As well, Vagasi 
et al. (2020) observed an increase in oxidative damage in house spar-
rows when levels of CORT, glucose as well as insulin-like growth factor- 
1 (IGF-1) were elevated. 

3.6. Ambient temperature 

A main consequence of urbanization is a local increase in air tem-
perature relative to surrounding non-urbanized areas (Tzavali et al., 
2015), a phenomenon called the urban heat island. The urban heat 
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Table 4 
Exposure of urban birds to heavy metals and other urban pollutants.  

Urban pollutant Species Findings References 

Heavy Metals Great tits (Parus major)  • Higher lead content in nestlings and aged birds (7+
years) 

Bauerova et al., 2020; Grunst et al., 
2020b  

• Feather heavy metals: significant association with 
heterophil/lymphocyte (H/L) ratio  

• Blood heavy metals: males with higher levels had lower 
H/L ratio, decreased absolute erythrocyte count and 
increased hematopoiesis 

Bauerová et al., 2017  

• Higher feather heavy metals associated with lower 
carotenoid coloration but no association with melanin 
coloration 

Grunst et al., 2020b 

Pigeons (Columba livia)  • Femur lead levels positively associated with traffic Drasch et al., 1987 
Common blackbirds (Turdus merula)  • Cd not associated with life history traits  

• Survival probability increased with higher levels 
Fritsch et al., 2019 

Acadian flycatcher (Empidonax virescens), 
Common blackbirds (Turdus merula)  

• Female blackbirds: Lead negatively associated with 
lifetime breeding success  

• Flycatcher: Mercury associated with lower number of 
fledglings; obtained from insect diet 

Fritsch et al., 2019; Rowse et al., 2014 

Bald eagle (Haliaeetus leucocephalus) 
nestlings, Common blackbirds (Turdus 
merula), Cattle egret (Bubulcus ibis), North 
Island Kaka (Nestor meridionalis 
septentrionalis), Adult and nestling 
Peregrine falcons (Falco peregrinus), 
Pigeons (Columba livia), Red-shouldered 
hawks (Buteo lineatus); House sparrows 
(Passer domesticus)  

• Detected heavy metals in feathers, feces, blood, and/or 
tissues  

• Associated with more DNA damage in pigeons  
• Associated with feather CORT and plasma CORT in 

common blackbirds and house sparrows, respectively  
• Associated with higher traffic areas 

Bruggeman et al., 2018; Ceyca- 
Contreras et al., 2020; DeMent et al., 
1986; Meillère et al., 2016; Pyzik et al., 
2021; Roux and Marra, 2007; Scheifler 
et al., 2006; Schilderman et al., 1997;  
Slabe et al., 2019; Sriram et al., 2018;  
Yasmeen et al., 2019; White et al., 2022 

Common eider (Somateria mollissima), Red- 
winged blackbirds (Agelaius phoeniceus)  

• Detected lower mercury in urban than rural red- 
winged nestlings; higher in adults than nestlings  

• High mercury in common eider indicative of marine 
pollution 

Gillet and Seewagen, 2014;  
Thorstensen et al., 2021 

Northern goshawk (Accipiter gentilis)  • No association with urbanization Dolan et al., 2017 
House sparrows (Passer domesticus)  • Detected 12 genes associated with exposure to lead 

including 2 metal transporters 
Andrew et al., 2019 

Flame retardants Ring-billed gulls (Larus delawarensis)  • Negatively correlated with bone mineral density  
• Levels in liver positively correlated with (thyroxine) T4 

and lower retinol  
• Liver levels negatively correlated with thyroid gland 

deiodinase type 3, thyroid peroxidase, and thyroid 
hormone receptor beta 

Desjardins et al., 2019; Plourde et al., 
2013; Técher et al., 2016 

Cooper’s hawks (Accipiter cooperii), 
Eurasian dipper (Cinclus cinclus) nests, 
Peregrine falcon (Falco peregrinus) 
nestlings  

• Urban peregrine falcon nestlings had lower 
polybrominated diphenyl ethers (PBDEs), higher T4, 
triiodothyronine (T3), lower T3:T4 ratio, lower retinol 
compared to rural  

• PDBEs negatively correlated with T3 

Brogan et al., 2017; Fernie et al., 2017;  
Morrissey et al., 2014 

Other chemicals: Insecticides, 
Rodenticides, PCBs, PDBEs, 
PFAAs, Organohalogen 
compounds, Dioxins 

Anna’s hummingbirds (Calypte anna), Barn 
owls (Tyto alba), Black-chinned 
hummingbirds (Archilochus alexandri), 
Black harrier (Circus maurus), Common 
eider (Somateria mollissima), Cooper’s 
hawk (Accipiter cooperii); Eurasian dipper 
(Cinclus cinclus) nests, Herring gull (Larus 
argentatus), Jungle crows (Corvus 
macrorhynchos), Peregrine falcons (Falco 
peregrinus), Red-tailed hawks (Buteo 
jamaicensis), vultures (Gyps bengalensis)  

• Black herrier: Detected polychlorinated diphenyls 
(PCBs) and dichlorodiphenyltrichloroethane (DDT); 
PCBs related to number of electrical transformers near 
nest  

• Detected organohalogen compounds in common eider 
– indicates marine pollution  

• PCBs correlated with urbanization in Cooper’s hawk 
and Eurasian dipper nests; PCBs negatively associated 
with thyroid hormones  

• Dioxins higher in urban jungle crows and associated 
with changes in thyroid gland histology  

• Detected neonicotinoid insecticides in Anna’s 
hummingbird and black-chinned hummingbird 
feathers  

• Detected anticoagulant rodenticide in red-tailed hawks 
and barn owls  

• Perfluoroalkyl acids (PFAAs) associated with thyroid 
hormone and thyroid gland activity in peregrine falcon 
nestlings; detected in blood and eggs  

• DDT and hexachlorocyclohexane (HCH) detected in 
pigeons and vultures  

• Higher short-chained chlorinated paraffins and cyclic 
volatile methyl siloxane (cVMS) deca-
methylcyclopentasiloxane in urban female herring 
gulls  

• Substituted diphenylamine higher in urban double 
crested cormorants 

Brogan et al., 2017; Garcia-Heras et al., 
2018; Graves et al., 2019; Huang et al., 
2016; Knudtzon et al., 2021; Kobayashi 
et al., 2005; Lu et al., 2019; Morrissey 
et al., 2014; Nair and Pillai, 1992;  
Okoniewski et al., 2021; Sun et al., 
2020, 2021; Thorstensen et al., 2021  

P. Deviche et al.                                                                                                                                                                                                                                 



General and Comparative Endocrinology 332 (2023) 114159

9

island results from the influence of many factors including air pollution, 
the release of heat by human activities, the physical configuration of 
urban spaces (e.g., geometry, light-reflecting surfaces), the lack of green 
spaces, and local meteorological and climatic characteristics. Even 
though the magnitude and temporal particularities of the urban heat 
island vary across cities, it is a worldwide phenomenon (Tzavali et al., 
2015). 

Temperature may alter the endocrinology of wild birds and investi-
gating these alterations in urban birds is relevant given the urban heat 
island effect (Ruuskanen et al., 2021). On average, birds maintain 
relatively high body temperatures of around 38.5 ◦C at rest, 41 ◦C while 
active, and 43.9 ◦C during high levels of activity (Prinzinger et al., 
1991). Elevated ambient temperatures may impact birds more so than 
mammals given their naturally higher body temperatures and metabolic 
rates (Ruuskanen et al., 2021). Thermoregulatory responses to 
increasing temperatures can be both physiological (increased body 
temperatures, metabolism, evaporative cooling; see review: McKechnie 
et al., 2021) and behavioral (moving towards shady, cooler areas, taking 
a bath, panting, fluffing feathers). Some urban animals may even take 
advantage of anthropogenic resources to maintain body temperature. 
For example, rosy-faced lovebirds (Agapornis roseicollis) living in 
Phoenix, Arizona capitalize on microclimates created by air condition-
ing relief vents to cool off from the summer heat (Mills and McGraw, 
2021). 

As mentioned above, increasing environmental temperatures prompt 
a rise in metabolic rate in animals (Ruuskanen et al., 2021; McKechnie 
et al., 2021). The HPT axis is primarily responsible for regulating body 
temperature in response to cold-induced hypothermia through activa-
tion of non-shivering thermogenesis via increased metabolic activity 
(Ruuskanen et al., 2021). Temperature may in some cases alter CORT 
levels which may in turn participate in thermoregulation by providing 
fuels for metabolism (Ruuskanen et al., 2021). Supporting a role of the 
HPA axis in the ability of birds to cope with change in ambient tem-
perature, recent studies have demonstrated that temporary cooling in-
creases feather CORT levels in chicks of several species (Crino et al., 
2020; Lynn et al., 2022). Importantly, another recent study found that 
heat waves increase CORT concentrations in a passerine and so are 
presumably perceived as an acute stressor (Moagi et al., 2021). The 
generality of this effect is not established: zebra finches, for example, did 
not increase their baseline plasma CORT levels during heat waves, 
provided that drinking water was available (Cooper et al., 2020). With 
increasing heat in urban environments, birds will likely rely increasingly 
on evaporative water loss to dissipate heat, which requires the regula-
tion of water balance to prevent excessive fluid loss and dehydration. 
Alternatively, some species may adjust to high ambient temperatures by 
shifting their thermoneutral zones to higher temperatures, thereby 
decreasing their metabolic heat production and evaporative water loss 
(Cooper et al., 2020). Arginine vasotocin (the avian homologue of 
mammalian vasopressin) may play an important role in these processes 
as it can inhibit thyroid hormones and lower heart rate and activity, in 
addition to decreasing shivering and body temperature (Ruuskanen 
et al., 2021). Overall, few avian studies have linked environmental 
temperature to endocrine functions (reviewed by de Bruijn and Romero, 
2018), especially in the context of urbanization. Thus, further research 
comparing urban and rural birds is necessary to better assess how the 
endocrine system is influenced by, and facilitates adjustments to, high 
environmental temperatures. 

The heat island effect may amplify and become geographically more 
widespread in the future due to more widespread urbanization com-
bined with global climate change. In addition to influencing thermo-
regulatory processes as described above, could the heat island effect, 
and more generally ambient temperature, alter the avian reproductive 
system? Several lines of evidence support this idea and in particular that 
ambient temperature can impact the initiation and termination of the 
annual reproductive period (Davies and Deviche, 2014). Correlative and 
experimental studies demonstrate that an increase in ambient 

temperature is associated with an earlier timing of breeding in birds 
(Visser et al., 2009; Schaper et al., 2012; Caro et al., 2013; Martin et al., 
2020). Consistent with the hypothesis that temperature is causally 
involved in this effect, captive photostimulated great tits developed 
their testes earlier when exposed to high (20 ◦C) as compared to low 
(4 ◦C) temperature (Silverin et al., 2008). Also, in agreement with these 
findings, exposure to elevated ambient temperature (30 ◦C) enhanced 
follicular development in photostimulated white-crowned sparrows 
(Zonotrichia leucophrys), although this treatment did not influence 
photoinduced male testicular development (Wingfield et al., 1997). 
Studies on other species confirm and extend these findings. For example, 
gonadal development, the initiation of breeding, as well as LH and 
testosterone levels are associated with spring temperatures in Asian 
short-toed larks (Alaudala cheleensis), in which an experimental increase 
in ambient temperature (3 ◦C) resulted in an earlier increase in LH, 
testosterone, and estradiol levels (Zhang et al., 2017). It should, how-
ever, be pointed out that elevated temperature does not increase the 
HPG axis activity in all bird species and/or populations. For instance, 
ambient temperature affected plasma LH levels in Eurasian skylarks 
(Alauda arvensis) but not in great tits (Gao et al., 2018). In the latter 
species in captivity, elevated ambient temperature promoted testicular 
development in photostimulated birds from southern (Italy) but not 
northern (Scandinavia) populations (Silverin et al., 2008). In addition, 
ambient temperature can under some circumstances be disconnected 
from LH, testosterone, and estradiol levels (Wingfield et al., 2003; Caro 
et al., 2013), suggesting a role for gonadotropin-independent mecha-
nisms. It should finally be noted that an increase in ambient temperature 
above a certain threshold (“heat wave”) can have the opposite effect to a 
moderate increase, i.e., it inhibits reproductive functions. This was the 
case in the male house finch (Haemorhous mexicanus), in which experi-
mental exposure to a simulated “heat wave” inhibited the endocrine 
reproductive axis including the testicular expression of 17β-hydrox-
ysteroid dehydrogenase (Valle et al., 2020). Besides altering the initia-
tion of seasonal reproductive processes, ambient temperature can 
modulate the timing of the reproductive system involution that takes 
place at the end of the breeding season, thereby potentially affecting the 
duration of this season. Indeed, captive male great tits regressed their 
gonads later when exposed to 4 ◦C than to 20 ◦C (Silverin et al., 2008). 
Similarly, low temperature delayed seasonal gonadal regression in the 
European starling (Dawson, 2018). Future research should thus consider 
comparing the overall duration of the reproductive period (i.e., the time 
between gonadal development and regression) in conspecific urban vs. 
non-urban birds with particular attention to the potential role of the heat 
island effect: Either a temporal shift in this period or a change in its 
duration may have considerable implications for the reproductive suc-
cess and, therefore, the fitness of urban birds. 

3.7. Pathogens 

Urbanization is classically associated with multiple biotic and abiotic 
changes that affect the occurrence and the transmission of pathogens 
(Bradley and Altizer, 2007). As a result, urban birds commonly carry a 
variety of pathogens such as Campylobacter jejuni in pigeons (Columba 
livia) and crows (Corvus sp.; Du et al., 2019; Gargiulo et al., 2014; Weis 
et al., 2014), Cryptococcus neoformans in pigeons (Afshari et al., 2012; 
Anacona et al., 2018), microsporidia in rooks (Corvus frugilegus; Perec- 
Matysiak et al., 2017), and Chlamydia psittaci in pigeons (Čechová et al., 
2016; Mattmann et al., 2019). Furthermore, some studies found differ-
ences in microorganisms carried by urban vs. non-urban birds. For 
example, the nests and feathers of urban mountain chickadees (Poecile 
gambeli) contained higher bacterial community richness compared to 
rural birds (Stephens et al., 2021). Likewise, a study found that urban 
house finches have a higher abundance of feather-degrading bacteria 
and larger preen glands than rural conspecifics (Giraudeau et al., 2017), 
the latter likely to compensate for higher loads of these bacteria. 

Not all pathogens are more prevalent in urban than rural birds, 
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however. For instance, avian malaria parasite infections did not differ 
between urban and rural house sparrows (Bichet et al., 2020). As well, 
urban Common blackbirds (Turdus merula) and blue-black grassquits 
(Volatinia jacarina) have a lower haemosporidian prevalence than rural 
conspecifics (Bentz et al., 2006; Fecchio et al., 2021). Whereas intestinal 
coccidians and poxvirus were found to be more prevalent among urban 
house finches (Giraudeau et al., 2014; McGraw et al., 2020), no spatial 
pattern was found for house sparrows (Ruiz-Martínez et al., 2016). 
Other research found a more complex relationship between urbaniza-
tion and prevalence of parasitic infections. For example, this relation-
ship in house sparrows differed depending on the fecal Yersinia species 
considered (Rouffaer et al., 2017). Pathogens not only activate the im-
mune system, but may also alter the HPA activity via cytokines. Indeed, 
the immune system is tightly connected to multiple endocrine systems 
(e.g., HPA axis, Martin, 2009). Moreover, studies have shown that urban 
great tits and those infected with hemoparasites have reduced 
carotenoid-based coloration (Horak et al., 2001; Isaksson et al., 2005). A 
study by McGraw et al. (2020) also found elevated glucose in urban 
house finches infected with poxvirus. Few studies have examined the 
potential link between pathogens and endocrine axes in wild birds. 
Recently, Names et al. (2021) found in a Hawaiian passerine that 
malaria-infected birds had lower prolactin levels than uninfected birds 
although no such difference was found for CORT and testosterone. 
Similarly, Bichet et al. (2020) did not find any difference in the func-
tioning of the HPA axis between malaria-infected and uninfected house 
sparrows in both urban and rural areas. Finally, Schoenle et al. (2017) 
experimentally demonstrated that malaria had no effect on circulating 
CORT levels in the red-winged blackbird (Agelaius phoeniceus). However, 
a recent meta-analysis reported that parasite infection is associated with 
an increase in the plasma levels of glucocorticoids in vertebrates 
(O’Dwyer et al., 2020). Interestingly, experimental immune studies also 
suggest that pathogens may induce important endocrine changes in 
birds. For example, several studies have used lipopolysaccharide (LPS) 
injections to mimic an acute infection and reported that this treatment 
inhibits the HPG axis (e.g., GnRH, Lopes et al., 2012; LH, Owen-Ashley 
et al., 2006; testosterone, Needham et al., 2017), activates the HPA axis 
(e.g., CORT, Owen-Ashley et al., 2006), and affects metabolic processes 
that may be linked to endocrine axes (Scalf et al., 2019). 

Importantly, the behavioral and physiological response of birds to 
infection can vary depending on the type of pathogen (Coon et al., 
2011), making it difficult to generalize the results from these former 
studies. In addition, the environmental context and, therefore, urbani-
zation, may also affect these behavioral and physiological responses to 
infection. Whether and how these pathogens alter the endocrine phys-
iology of urban birds has largely been ignored in the scientific literature 
and is a topic that definitely deserves further work. 

3.8. Predation 

The risk of predation can affect the endocrine system and particu-
larly the HPA axis. For instance, Great Tits rapidly increased their CORT 
secretion when exposed to a stuffed Tengmalm’s Owl, Aegolius funereus, 
but not to a non-predatory bird (Cockrem and Silverin, 2002). As well, 
European Starlings witnessing a brief (< 10 s.) predator attack respon-
ded by increasing their plasma CORT (Jones et al., 2016). The impor-
tance of these effects to wild animal populations remains poorly 
understood for several reasons. First, urban environments have high 
populations of predators but predation is sometimes lower than in cor-
responding rural environment (the Predation Paradox: Fischer et al., 
2012; Rodewald et al., 2010; Shochat, 2004). Second, urban animals can 
modify their behaviors to avoid predation (Moller and Ibanez-Alamo, 
2012), and in some cases can also adjust physiologically to the risk of 
predation by attenuating their endocrine response to stressors, thereby 
presumably decreasing the potential for developing chronic stress 
(Nelson et al., 2015). Thus, whether predator-prey interactions chroni-
cally alter the endocrine physiology of urban birds (Iglesias-Carrasco 

et al., 2020; Injaian et al., 2020; Romero and Beattie, 2022) remains 
largely unknown. Furthermore, interactions between predators and prey 
in urban environments may be disrupted by the high availability of 
anthropogenic food resources (Rodewald et al., 2010). Much research is 
warranted in this field given the current paucity of studies relating 
predation and the endocrine physiology of wild birds. 

3.9. Genetic and epigenetic adaptations 

Mounting, albeit currently limited, evidence indicates that genetic 
modifications may contribute to avian adaptations to urbanization. This 
is the case in dark-eyed juncos (Junco hyemalis), in which colonization of 
urban environments by some populations was apparently associated 
with genetically driven plumage differentiation from non-urban pop-
ulations (Yeh, 2004, but see Friis et al., 2022). A study of invasive Javan 
mynas (Acridotheres javanicus) identified low buildings as barriers to 
gene flow (Low et al., 2018), while Delaney et al. (2010) implicated 
roadways in reduced gene flow in wrentits (Chamaea fasciata). Con-
trasting with these findings, a study of tree sparrows identified only 
weak genetic differences between urban and rural birds (Zhang et al., 
2013) and a study of song sparrows found comparable genetic diversity 
among study sites (Brewer et al., 2020). In contrast, Evans et al. (2009) 
found less genetic diversity in urban common blackbirds (Turdus merula) 
while Mueller et al. (2018) found reduced gene flow in urban burrowing 
owls (Athene cunicularia). Expanding upon this work, Andrew et al. 
(2019) used house sparrows to identify 12 genes that are associated with 
exposure to environmental lead, with two of these genes being involved 
in metal transporters. Moreover, recent studies have identified genes 
associated with antimicrobial resistance in fecal samples collected from 
urban rock pigeons (Blanco-Peña et al., 2017; Morakchi et al., 2017). 
Adding to the idea that urban and non-urban birds differ genetically, a 
polymorphism in the serotonin transporter (SERT) gene was found in 
urban common blackbirds (Mueller et al., 2013). Furthermore, Renthlei 
et al. (2020) identified genes, including Bmal1, Npas2, Per2, and Cry1, 
whose expression peaked earlier during development in urban Eurasian 
tree sparrows, while expression of the Clock gene was delayed in these 
birds. Similarly, genes associated with neuronal connectivity, motiva-
tion and cognitive function were enriched in urban burrowing owls 
(Mueller et al., 2020). Transcriptomics also revealed that genes related 
to stress responses are more highly expressed in urban great tits (Watson 
et al., 2017). As already mentioned, other work suggests that aspects of 
the avian CORT response to stress involves a genetic component (Jen-
kins et al., 2014). Thus, it cannot be dismissed that differences in gene 
expression as described by Watson et al. (2017) contribute to estab-
lishing this differential pattern of CORT secretion. Overall, therefore, the 
above studies support the hypothesis that urban environments can cause 
genetic changes. It should, however, be noted that limited evidence is 
yet available demonstrating that these changes contribute to endocrine 
differences between urban and non-urban birds, a topic that awaits 
further research. 

Gene expression can also be regulated epigenetically, e.g., through 
DNA methylation. There is evidence for differences in DNA methylation 
between Darwin’s finches (Geospiza fortis and Geospiza fuliginosa) 
residing in urban vs. rural areas (McNew et al., 2017) and it has been 
suggested that DNA methylation in house sparrows contributes to the 
phenotypic plasticity that this species exhibits in relationship to colo-
nization of new environments (Liebl et al., 2013). Riyahi et al. (2015) 
found 1–4% higher methylation of SERT and DRD4 genes in urban great 
tits that were associated with exploratory behavior and novelty seeking. 
In the same species, Watson et al. (2020) found differentially methylated 
genes associated with steroid biosynthesis and transport of cholesterol 
(among other processes) and they isolated diet and exposure to reactive 
oxygen species as factors driving these changes. A few studies examined 
telomere length in relationship to urbanization, but insufficient data are 
currently available to draw firm conclusions. For example, urban com-
mon blackbirds were found to have shorter telomeres (Ibáñez-Álamo 
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et al., 2018) and Meillère et al. (2015a) found in house sparrows that 
exposure to traffic noise shortens telomeres. In addition, Salmon et al. 
(2016) experimentally showed that the urban environment was associ-
ated with shorter telomeres in great tit nestlings. However, Dorado- 
Correa et al. (2018) observed no such shortening in zebra finches, 
although they reported negative effects of ambient noise in post fledg-
ling birds. Similarly, Biard et al. (2017) studied four populations of great 
tits and did not find any relationship between telomere length and the 
degree of urbanization. Together, these data offer tantalizing evidence 
for epigenetic mechanisms affecting the avian endocrine phenotype. 
However, it is generally difficult to differentiate between phenotypic 
differences resulting from (epi)genetic changes vs. from other develop-
mental processes (Miranda et al., 2013; Ouyang et al., 2019) and so 
considerably more work is necessary to fully understand the physio-
logical implications of urbanization-related epigenetic changes. 

4. Challenges and opportunities in urban endocrine research 

A considerable amount of information is now available concerning 
relationships between urbanization and the avian endocrine system. 
Studies demonstrate, in particular, that multiple aspects of urbanization 
ranging from anthropogenic noise, ALAN, chemical pollution, food and 
water quality and availability, temperature, and pathogens affect 
endocrine systems or have the potential to do so at all life stages and in a 
wide range of taxa. These studies also reveal that such effects occur 
across cities around the world. However, results are often inconsistent 
and fail to follow predictions such that findings can be difficult to 
interpret, to extrapolate across taxa and locations, and, therefore, to 
generalize. In addition, most studies to date have focused on few 
endocrine systems, especially the HPA and HPG axes. Little information 
is consequently available on associations or causal relationships be-
tween urbanization and many hormones including those that play crit-
ical metabolic roles (e.g., thyroid hormones, growth hormone, and 
glucagon; Renthlei et al., 2021), regulate blood osmolality, volume, and 
pressure (e.g., vasotocin and angiotensin; (Fokidis and Deviche, 2012)), 
govern the expression of parental behavior (prolactin; Angelier and 
Chastel, 2009), and control digestive physiology (e.g., cholecystokinin 
and vasoactive intestinal polypeptide). Additionally, few studies have 
examined either genetic or epigenetic endocrine-related adaptations to 
urban environments. Thus, we lack clear and unequivocal answers to 
many fundamental questions regarding the impact of urbanization on 
avian endocrine systems. Answering these questions will continue to 
pose challenges (Table 5) but despite, and in fact due to the above 
limitations, many opportunities exist for significant progress. 

4.1. Correlative vs. causative research 

Urban ecosystems vary greatly with respect to many of their physical 
characteristics including size, geography and climate, type and expanse 
of infrastructure and green spaces, water availability, history, and 
growth rate. Furthermore, some of these characteristics often co-vary in 
time and/or space, making it difficult to disentangle the relative impacts 
of multiple urban environmental factors on endocrine systems. For 
example, urban centers often have higher air pollution levels but also 
more ALAN, higher temperature, and more ambient noise than periph-
eral areas. Another challenge to researchers is that these factors may 
affect organisms not only by themselves but also additively, and/or 
synergistically. As a result, much of the work done to date on the bio-
logical effects of urbanization has yielded correlative information, and 
relatively few, mechanistic, causative studies on free-living organisms 
have aimed at establishing a role for specific features of the urban 
environment (e.g., Davies et al., 2017; Dominoni et al., 2013, 2018, 
2021; Injaian et al., 2018; Mulholland et al., 2018). Furthermore, many 
studies compare only a couple of study sites (e.g., rural vs. urban; e.g., 
Abolins-Abols et al., 2016; Atwell et al., 2012; McNew et al., 2017; 
Yasmeen et al., 2019), or investigate only birds residing in the urban 

environment (e.g., Baesse et al., 2019; Bauerová et al., 2017; Bauerova 
et al., 2020; Burt et al., 2021; Casasole et al., 2017). As the physical 
characteristics of areas within a city (e.g., number, size, and connectivity 
of green spaces; socioeconomic status; open sources of water; proportion 
of residential vs. industrial buildings; ambient noise level) can vary 
considerably at the microscale level, the correlative nature of many 
studies, together with the lack of replicates, can limit the ability to draw 
general conclusions. New studies are, therefore, warranted to further 

Table 5 
Current challenges and recommendations for research aimed at elucidating the 
effects of urbanization on avian wildlife.  

Challenges Recommendations 

Varied physiological responses to 
urbanization  

● Consider interspecific variations in 
experimental designs (species specific 
outcomes)  

● Consider intraspecific variations in 
experimental designs (individual 
variations in outcomes)  

● Consider urbanization gradients within 
and between cities (ex: pollution, ALAN, 
temperature, noise, green spaces, built 
environment) and how these factors may 
act alone, additively, or synergistically 

Variations between species limit 
generalization  

● Consider standardized approaches that 
include a small number of representative 
models with wide geographic 
distribution in diverse urban ecosystems 
(ex: house sparrows, rock pigeon, 
starlings)  

● Continue to investigate less widespread 
species and those that do not adapt well 
to urbanization to identify adaptive and 
maladaptive characteristics of birds as 
well as unusual or extreme adaptations  

● Assess underlying mechanisms as well as 
gauge generalization of the findings. 

Potential for altering the genotype 
and thus evolution of species  

● Consider phenotypic plasticity vs 
genomic or epigenetic adaptations  

● Identify specific environmental factors 
to which animals respond behaviorally 
and physiologically to identify causal 
relationships and those that may alter 
phenotype  

● Consider mechanistic experiments that 
manipulate singly and additively 
variables of interest such as light, 
temperature, noise, food, social 
environment, etc. 

Accurate physiological indicators of 
stress  

● Consider alternative measures of stress 
(in addition to, or in place of, CORT) 
such as behavior, epinephrine/ 
norepinephrine (E/NE), etc.  

● Identify specific environmental factors 
to which animals respond behaviorally 
and physiologically to identify potential 
stressors and stress responses  

● Consider whether stressors and 
outcomes may occur alone, additively, 
or synergistically  

● Consider long-term studies to assess 
desensitization 

Observational studies often lack 
mechanistic insights  

● Incorporate mechanistic, manipulative 
approaches to identify specific 
environmental factors that shape 
phenotypic responses  

● Identify neuroendocrine and metabolic 
bases of responses 

Potential influence of confounding 
factors and their interactions is 
often lacking  

● Identify factors that may affect responses 
to urbanization such as sex, age, 
developmental profile, reproductive 
status, season, spatial and temporal 
resource requirements, social system, 
mobility, and metabolism  

● Identify cumulative or synergistic 
interactions  
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identify the specific environmental factors to which urban organisms 
respond behaviorally and physiologically, to characterize the mecha-
nisms of action of these factors at the organismal, tissue, and cellular 
levels, and to determine whether they act alone, additively, or syner-
gistically. Field studies on this subject will continue to serve as essential 
tools. These studies will gain from the inclusion, when feasible, of 
manipulative experiments in which variables of interest (e.g., light, 
temperature, noise, food, and social environment; see above examples) 
are modulated in a controlled manner and within ecologically relevant 
limits. 

4.2. Integration across space, expertise, and species 

In order to obtain a more comprehensive picture of the link between 
urbanization and endocrine systems, we believe that field studies will 
benefit from an integration in national, continental and international 
networks (see Beaugeard et al., 2019; Ibáñez-Álamo et al., 2020; Salmón 
et al., 2021 for some examples). Such networks would allow the scien-
tific community not only to replicate field studies along a wide variety of 
urban sites with contrasted characteristics (land use, climate, degree of 
urbanization, etc.), but also to benefit from the expertise of each 
research group in specific endocrine systems. Given the complexity of 
the urban environment and multitude of endocrine axes of interest, such 
networks seem crucial to obtain a better understanding of the influence 
of urbanization on the endocrinology of birds, and to a larger extent on 
the ecology of birds. These networks could focus on a few species that 
are widely studied at the continental scale (e.g., great tits and common 
blackbirds in Europe; Eurasian tree sparrow in Asia; song sparrows, 
northern cardinals, and house finch in North America) or even at a 
planetary scale (e.g., house sparrows and feral pigeons), and allow us to 
generalize findings. In addition, they could also allow us to obtain robust 
endocrine data on a wide range of bird species, and thus, to better un-
derstand the role of endocrine mechanisms in determining the ability of 
species to adjust to the urban environment. 

4.3. A call for standardized methodological approaches 

The above approach alone will often not suffice to establish causal 
relationships between environmental factors and physiological pro-
cesses, and progress in this area will be facilitated by integrating 
research on free-ranging subjects with work in captive settings. Re-
searchers will, however, need to bear in mind that captive settings do 
generally not replicate the richness and diversity of biotic and abiotic 
stimuli to which free-ranging organisms are naturally exposed. Captive 
settings can also be stressful to study animals and consequently modify 
their normal physiology and behavior (Romero and Wingfield, 1999; 
Fischer et al., 2018; Dickens and Romero, 2009; Dickens et al., 2009). In 
addition, many captive studies are conducted on domesticated bird 
species, which can dramatically differ in their endocrine physiology in 
comparison to wild urban birds. Thus, the extension of conclusions 
reached from captive studies to free-ranging organisms should always be 
asserted carefully and conservatively, keeping in mind the biological 
peculiarities of the species including its natural ecology, behavior, and 
physiology. 

A main challenge facing avian urban endocrinologists is that the 
diversity of organisms used in studies of urbanization and the hetero-
geneity of urban environments make it difficult to identify generalized 
patterns. Within the same vertebrate class (i.e., birds), taxa vary greatly 
with regard to their biological characteristics including spatial and 
temporal resource requirements, metabolism, developmental profile, 
and life history (e.g., social system, seasonality, and mobility). Not 
surprisingly, these differences are associated with varied responses to 
urbanization which can, therefore, appear to be taxon-specific. This is 
the case for the reproductive system. For instance, Renthlei et al. (2021) 
observed delayed seasonal testicular development in free-ranging urban 
Eurasian tree sparrows, along with lower transcription of GnRH. In 

contrast, LH secretion increased and testicular development occurred 
earlier in the year in urban than rural captive-raised common blackbirds 
(Partecke et al., 2004) and in free-ranging Abert’s towhees (Davies et al., 
2015b). In both species, these differences were observed in the wild as 
well as in captivity (Partecke et al., 2004; Davies et al., 2015b), indi-
cating that findings in captive birds were not the result of captive con-
ditions. Studies on relationships between urbanization and CORT, by far 
the most commonly measured hormone in studies on the avian stress 
response, similarly reveal extensive species differences. For example, 
feather CORT is lower in urban than rural male common blackbirds but 
no such relationship is observed in conspecific females (Ibáñez-Álamo 
et al., 2020). By contrast, feather CORT in juvenile house sparrows is 
positively correlated with the level of urbanization (Beaugeard et al., 
2019). The origin and ecological significance of these apparent inter-
specific differences are unclear. It is possible that urbanization does, 
indeed, inherently affect birds physiologically in a taxon-specific 
manner. Alternatively, limited data and many of the experimental 
methodologies used to date may contribute to producing apparent dis-
crepancies between studies. For example, feather CORT in the house 
sparrow is negatively related to the degree of urbanization as deter-
mined at the individual home range, but not at the city-level scale 
(Strubbe et al., 2020). Furthermore, CORT in birds may in fact not 
constitute an accurate biomarker of stress (Romero and Beattie, 2022). If 
this hypothesis is correct, a lack of consistency between studies on the 
relationships between urbanization (e.g., human population density, 
ambient noise, or nocturnal illumination; Injaian et al., 2020) and the 
stress response as determined by CORT would not be unexpected. Re-
searchers investigating relationships between urbanization and stress 
should, therefore, consider measuring alternate and/or additional in-
dicators of physiological stress, such as thyroid hormones, heat shock 
proteins, markers of oxidative stress, and immune parameters such as 
the blood heterophil to lymphocyte (H/L) ratio. To facilitate the com-
parison and integration of results across studies, it would also be greatly 
beneficial to establish a standard and representative number of such 
parameters that, when possible, will be measured across studies. 

4.4. Model species vs. comparative approaches 

Most avian studies on the endocrine effects of urbanization have 
been carried out on a relatively small number of widespread and easily 
accessible model species, in particular house sparrows, tree swallows, 
great tits, European kestrels (Falcon tinnunculus), and song sparrows. 
Further research on these species in diverse urban environments and 
climatic conditions is essential as it minimizes the need to address some 
above-mentioned complications and may reveal generalizations in the 
endocrine responses to urbanization. Comparative studies using less 
well-studied species, including those belonging to various taxonomic 
groups, that adjust to various degrees to urbanization, use various types 
of resources, and differ with respect to their life histories, are also of 
great importance in order to test the generality of findings in better 
investigated species. Finally, examination of species that avoid urban 
environments, or whose populations are declining in urban environ-
ments, is important in formulating generalizations and understanding 
exceptions in the responses to urbanization. In addition to urban 
adapters and urban exploiters, these urban avoiders are crucial to study 
in order to better understand how endocrine mechanisms may affect the 
ability of avian species to exploit and persist in the urban environment. 

4.5. Phenotypic adjustments vs. adaptations 

Another challenge results from the difficulty of assigning behavioral 
differences to phenotypic plasticity vs. adaptation. For instance, the 
flight initiation distance of many birds decreases following repeated 
contact with humans, but whether this decrease reflects habituation or 
non-random distribution of individuals differing in heritable personality 
traits is not established (Botsch et al., 2018). Phenotypic plasticity 
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extends to some aspects of the endocrine system. Ouyang et al. (2019) 
found in adult free-ranging urban house wrens that urban birds have 
higher baseline CORT than rural conspecifics. This difference is already 
observed at the time of hatching in captive-raised birds, but rural 
offspring increase plasma CORT when moved to urban environments. 
Thus, the observed difference in adult hormone levels in this study was 
apparently due to phenotypic plasticity. Increasing evidence also sup-
ports the existence of genetic and epigenetic differences between rural 
and conspecific urban avian populations (section 3.9). 

5. Concluding remarks 

In this review, we have attempted to summarize the current litera-
ture examining the impact of urbanization on the endocrine physiology 
of wild birds. While some relatively widespread responses to urbaniza-
tion have emerged, such as earlier development of reproductive systems 
in seasonally breeding urban birds, these responses do not appear to be 
associated with corresponding differences in the endocrine physiology 
of urban birds, such that generalizations regarding the endocrine 
response to urbanization have failed to emerge as noted a decade ago by 
Bonier (2012). Similarly, the impacts of presumed urban stressors 
related, e.g., to food and water availability, temperature, noise, ALAN, 
and pollution on avian endocrine physiology show little consistency 
across taxa. We suggest that these dissimilarities arise in part from the 
heterogeneity of study species, experimental designs, and outcomes. 
Moreover, many studies included in this review were correlative in 
nature, thus limiting the ability to determine causal relationships. 
Looking to the future, we recommend prioritizing mechanistic ap-
proaches to identify environmental factors unique to urban environ-
ments as well as animal-specific factors (species, behavior, age, sex, 
reproductive status, mobility, seasonality, etc.) that alone or together 
may shape phenotypic responses of organisms to their environment. 
Standardizing approaches with regard to experimental models, systems, 
and study design should help identify generalizable patterns in the 
endocrine response of birds to urbanization. However, we recognize the 
critical role of explorative studies that examine unique species, study 
systems, and patterns of adaptation. As noted here and throughout this 
review, much remains to be learned about avian adaptations to urban 
environments, and the study of endocrine physiology can definitely 
contribute to a better understanding of these adaptations. Moreover, 
elucidating the bases of these adaptations may have profound implica-
tions for understanding the determinants of urban biodiversity as well as 
the composition and dynamics of urban wildlife communities. This un-
derstanding will become increasingly important as urbanization con-
tinues to expand worldwide and it may serve as an important tool in the 
design and renovation of urban spaces to facilitate the accommodation 
of both human activities and wildlife. 
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Brischoux, F., Meillère, A., Dupoué, A., Lourdais, O., Angelier, F., 2017. Traffic noise 
decreases nestlings’ metabolic rates in an urban exploiter. J. Avian Biol. 48, 
905–909. https://doi.org/10.1111/jav.01139. 

Brischoux, F., Beaugeard, E., Mohring, B., Parenteau, C., Angelier, F., 2020. Short-term 
dehydration influences baseline but not stress-induced corticosterone levels in the 
house sparrow (Passer domesticus). J. Exp. Biol. 223 (3), jeb216424. https://doi.org/ 
10.1242/jeb.216424. 

Brogan, J.M., Green, D.J., Maisonneuve, F., Elliott, J.E., 2017. An assessment of exposure 
and effects of persistent organic pollutants in an urban Cooper’s hawk (Accipiter 
cooperii) population. Ecotoxicology. 26 (1), 32–45. https://doi.org/10.1007/s10646- 
016-1738-3. 

Broomand, Z., Mayahi, M., Hosseini, H., Valadbeigi, S., 2019. Detection and Isolation of 
H9N2 Subtype of Avian Influenza Virus in House Sparrows (Passer domesticus) of 
Ahvaz, Iran. Arch. Razi. Inst. 74 (4), 439–444. https://doi.org/10.22092/ 
ari.2019.122504.1223. 

Bruggeman, J.E., Route, W.T., Redig, P.T., Key, R.L., 2018. Patterns and trends in lead 
(Pb) concentrations in bald eagle (Haliaeetus leucocephalus) nestlings from the 
western Great Lakes region. Ecotoxicology. 27 (5), 605–618. https://doi.org/ 
10.1007/s10646-018-1933-5. 

Brumm, H., 2004. The impact of environmental noise on song amplitude in a territorial 
bird. J. Anim. Ecol. 73, 434–440. 

Burger, J., Gochfeld, M., 1997. Age differences in metals in the blood of herring (Larus 
argentatus) and Franklin’s (Larus pipixcan) gulls. Arch. Environ. Contam. Toxicol. 33 
(4), 436–440. https://doi.org/10.1007/s002449900274. 

Burt, S.A., Vos, C.J., Buijs, J.A., Corbee, R.J., 2021. Nutritional implications of feeding 
free-living birds in public urban areas. J. Anim. Physiol. Anim. Nutr. (Berl). 105 (2), 
385–393. https://doi.org/10.1111/jpn.13441. 

Buxton, V.L., Santymire, R.M., Benson, T.J., 2018. Mixed effects of urbanization on 
density, nest survival, and nestling corticosterone of a generalist passerine. 
Ecosphere 9 (12), e02517. 

Caro, S.P., Schaper, S.V., Hut, R.A., Ball, G.F., Visser, M.E., 2013. The Case of the Missing 
Mechanism: How Does Temperature Influence Seasonal Timing in Endotherms? 
PLOS Biol. 11 (4), e1001517. https://doi.org/10.1371/journal.pbio.1001517. 

Casagrande, S., DeMoranville, K.J., Trost, L., Pierce, B., Bryla, A., Dzialo, M., 
Sadowska, E.T., Bauchinger, U., McWilliams, S.R., 2020. Dietary antioxidants 
attenuate the endocrine stress response during long-duration flight of a migratory 
bird. Proc. R. Soc. B 287, 20200744. https://doi.org/10.1098/rspb.2020.0744. 

Casasole, G., Raap, T., Costantini, D., AbdElgawad, H., Asard, H., Pinxten, R., Eens, M., 
2017. Neither artificial light at night, anthropogenic noise nor distance from roads 
are associated with oxidative status of nestlings in an urban population of songbirds. 
Comp. Biochem. Physiol. A Mol. Integr. Physiol. 210, 14–21. https://doi.org/ 
10.1016/j.cbpa.2017.05.003. 

Cassone, V.M., Westneat, D.F., 2012. The bird of time: cognition and the avian biological 
clock. Front. Mol. Neurosci. 5, 32. https://doi.org/10.3389/fnmol.2012.00032. 
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Melsió, A., Borrego, C.M., 2021. Faecal microbiota and antibiotic resistance genes in 
migratory waterbirds with contrasting habitat use. Sci. Total Environ. 783, 146872 
https://doi.org/10.1016/j.scitotenv.2021.146872. 

Jenkins, B.R., Vitousek, M.N., Hubbard, J.K., Safran, R.J., 2014. An experimental 
analysis of the heritability of variation in glucocorticoid concentrations in a wild 
avian population. Proc. Biol. Sci. 281 (1790), 20141302. https://doi.org/10.1098/ 
rspb.2014.1302. 

Jimenez-Penuela, J., Ferraguti, M., Martinez-de la Puente, J., Soriguer, R., Figuerola, J., 
2019. Urbanization and blood parasite infections affect the body condition of wild 
birds. Sci. Total Environ. 651 (Pt 2), 3015–3022. https://doi.org/10.1016/j. 
scitotenv.2018.10.203. 

Jones, B.C., Smith, A.D., Bebus, S.E., Schoech, S.J., 2016. Two seconds is all it takes: 
European starlings (Sturnus vulgaris) increase levels of circulating glucocorticoids 
after witnessing a brief raptor attack. Horm. Behav. 78, 72–78. 

Kishkinev, D., Packmor, F., Zechmeister, T., Winkler, H.-C., Chernetsov, N., 
Mouritsen, H., Holland, R.A., 2021. Navigation by extrapolation of geomagnetic cues 
in a migratory songbird. Curr. Biol. 31 (7), 1563–1569. https://doi.org/10.1016/j/ 
cub.2021.01.051. 

Kistler, W.M., Stallknecht, D.E., Deliberto, T.J., Swafford, S., Pedersen, K., Van Why, K., 
Wolf, P.C., Hill, J.A., Bruning, D.L., Cumbee, J.C., Mickley, R.M., Betsill, C.W., 
Randall, A.R., Berghaus, R.D., Yabsley, M.J., 2012. Antibodies to avian influenza 
viruses in Canada geese (Branta canadensis): a potential surveillance tool? J. Wildl. 
Dis. 48 (4), 1097–1101. https://doi.org/10.7589/2011-02-046. 

Kleist, N.J., Guralnick, R.P., Cruz, A., Lowry, C.A., Francis, C.D., 2018. Chronic 
anthropogenic noise disrupts glucocorticoid signaling and has multiple effects on 
fitness in an avian community. Proc. Natl. Acad. Sci. 115, E648–E657. https://doi. 
org/10.1073/pnas.1709200115. 

Kmet, V., Drugdova, Z., Kmetova, M., Stanko, M., 2013. Virulence and antibiotic 
resistance of Escherichia coli isolated from rooks. Ann. Agric. Environ. Med. 20 (2), 
273–275. 

Knudtzon, N.C., Thorstensen, H., Ruus, A., Helberg, M., Bæk, K., Enge, E.K., Borgå, K., 
2021. Maternal transfer and occurrence of siloxanes, chlorinated paraffins, metals, 
PFAS and legacy POPs in herring gulls (Larus argentatus) of different urban 
influence. Environ. Int. 152, 106478 https://doi.org/10.1016/j. 
envint.2021.106478. 

Kobayashi, M., Kashida, Y., Yoneda, K., Iwata, H., Watanabe, M., Tanabe, S., Fukatsu, H., 
Machida, N., Mitsumori, K., 2005. Thyroid lesions and dioxin accumulation in the 
livers of jungle crows (Corvus macrorhynchos) in urban and suburban Tokyo. Arch. 
Environ. Contam. Toxicol. 48 (3), 424–432. https://doi.org/10.1007/s00244-004- 
0101-5. 

Konell, A.L., Sato, A.P., Stival, M., Malaguini, N.P., Anjos, A.D., Ferreira, R.F., Locatelli- 
Dittrich, R., 2019. Serosurvey of Toxoplasma gondii, Sarcocystis sp. and Neospora 
caninum in geese (Anser sp.) from urban parks and captivity. Rev. Bras. Parasitol. 
Vet. 28 (2), 221–228. https://doi.org/10.1590/S1984-29612019042. 

Krause, E.T., Ruploh, T., 2016. Captive domesticated zebra finches (Taeniopygia guttata) 
have increased plasma corticosterone concentrations in the absence of bathing 
water. Appl. Anim. Behav. Sci. 182, 80–85. https://doi.org/10.1016/j. 
applanim.2016.06.003. 

Krause, J.S., McGuigan, M.A., Bishop, V.R., Wingfield, J.C., Meddle, S.L., 2015. 
Decreases in mineralocorticoid but not glucocorticoid receptor mRNA expression 
during the short Arctic breeding season in free-living Gambel’s white crowned 
sparrow (Zonotrichia leucophrys gambelii). J. Neuroendocrinol. 27 (1), 66–75. https:// 
doi.org/10.1111/jne.12237. 

Landys, M.M., Ramenofsky, M., Wingfield, J.C., 2006. Actions of glucocorticoids at a 
seasonal baseline as compared to stress-related levels in the regulation of periodic 
life processes. Gen. Comp. Endocrinol. 148 (2), 132–149. https://doi.org/10.1016/j. 
ygcen.2006.02.013. 

P. Deviche et al.                                                                                                                                                                                                                                 

https://doi.org/10.1016/j.scitotenv.2019.135793
https://doi.org/10.1016/j.scitotenv.2019.135793
https://doi.org/10.3390/microorganisms9030504
https://doi.org/10.3390/microorganisms9030504
https://doi.org/10.1007/s11356-020-10057-y
https://doi.org/10.1007/s11356-019-04903-x
https://doi.org/10.1126/science.1150195
http://refhub.elsevier.com/S0016-6480(22)00184-8/rf0635
http://refhub.elsevier.com/S0016-6480(22)00184-8/rf0635
https://doi.org/10.1016/j.scitotenv.2018.11.383
https://doi.org/10.1016/j.envpol.2019.113373
https://doi.org/10.1016/j.envpol.2019.113373
https://doi.org/10.1016/j.envpol.2019.113473
https://doi.org/10.1016/j.envpol.2019.113473
https://doi.org/10.1016/j.envpol.2019.113895
https://doi.org/10.1016/j.envpol.2019.113895
https://doi.org/10.5653/cerm.2012.39.1.1
https://doi.org/10.5653/cerm.2012.39.1.1
http://refhub.elsevier.com/S0016-6480(22)00184-8/rf0665
http://refhub.elsevier.com/S0016-6480(22)00184-8/rf0665
http://refhub.elsevier.com/S0016-6480(22)00184-8/rf0665
https://doi.org/10.1111/j.1863-2378.2012.01462.x
https://doi.org/10.1186/1742-9994-12-S1-S7
https://doi.org/10.1098/rspb.2011.1913
https://doi.org/10.1890/08-0140.1
https://doi.org/10.1016/j.ecolind.2013.08.014
https://doi.org/10.1016/j.ecolind.2013.08.014
https://doi.org/10.1089/mdr.2017.0263
https://doi.org/10.1089/mdr.2017.0263
https://doi.org/10.3389/fmicb.2020.01397
https://doi.org/10.1007/s00442000013
https://doi.org/10.1007/s10646-016-1662-6
https://doi.org/10.1007/s10646-016-1662-6
https://doi.org/10.1093/jue/juaa015
https://doi.org/10.1098/rsbl.2018.0083
https://doi.org/10.1098/rsbl.2018.0083
https://doi.org/10.1016/j.scitotenv.2020.137332
https://doi.org/10.1016/j.scitotenv.2020.137332
https://doi.org/10.1098/rspb.2020.1754
https://doi.org/10.1016/j.yhbeh.2018.07.012
https://doi.org/10.1093/conphys/coz110
https://doi.org/10.1093/conphys/coz110
https://doi.org/10.1093/icb/icab055
https://doi.org/10.1007/s10393-005-3869-5
https://doi.org/10.1016/j.envres.2008.10.006
https://doi.org/10.1016/j.envres.2008.10.006
https://doi.org/10.1016/j.scitotenv.2021.146872
https://doi.org/10.1098/rspb.2014.1302
https://doi.org/10.1098/rspb.2014.1302
https://doi.org/10.1016/j.scitotenv.2018.10.203
https://doi.org/10.1016/j.scitotenv.2018.10.203
http://refhub.elsevier.com/S0016-6480(22)00184-8/rf0775
http://refhub.elsevier.com/S0016-6480(22)00184-8/rf0775
http://refhub.elsevier.com/S0016-6480(22)00184-8/rf0775
https://doi.org/10.1016/j/cub.2021.01.051
https://doi.org/10.1016/j/cub.2021.01.051
https://doi.org/10.7589/2011-02-046
https://doi.org/10.1073/pnas.1709200115
https://doi.org/10.1073/pnas.1709200115
http://refhub.elsevier.com/S0016-6480(22)00184-8/rf0795
http://refhub.elsevier.com/S0016-6480(22)00184-8/rf0795
http://refhub.elsevier.com/S0016-6480(22)00184-8/rf0795
https://doi.org/10.1016/j.envint.2021.106478
https://doi.org/10.1016/j.envint.2021.106478
https://doi.org/10.1007/s00244-004-0101-5
https://doi.org/10.1007/s00244-004-0101-5
https://doi.org/10.1590/S1984-29612019042
https://doi.org/10.1016/j.applanim.2016.06.003
https://doi.org/10.1016/j.applanim.2016.06.003
https://doi.org/10.1111/jne.12237
https://doi.org/10.1111/jne.12237
https://doi.org/10.1016/j.ygcen.2006.02.013
https://doi.org/10.1016/j.ygcen.2006.02.013


General and Comparative Endocrinology 332 (2023) 114159

17

Lane, S.J., Emmerson, M.G., VanDiest, I.J., Hucul, C., Beck, M.L., Davies, S., Gilbert, E.R., 
Sewall, K.B., 2021. Hypothalamic-pituitary-adrenal axis regulation and organization 
in urban and rural song sparrows. Gen. Comp. Endocrinol. 310, 113809. 

Larson, E.K., Perrings, C., 2013. The value of water-related amenities in an arid city: the 
case of the Phoenix metropolitan area. Landsc. Urban Plan. 109 (1), 45–55. https:// 
doi.org/10.1016/j.landurbplan.2012.10.008. 

Laszlo, A.M., Ladanyi, M., Boda, K., Csicsman, J., Bari, F., Serester, A., Molnar, Z., 
Sepp, K., Galfi, M., Radacs, M., 2018. Effects of extremely low frequency 
electromagnetic fields on turkeys. Poult. Sci. 97 (2), 634–642. https://doi.org/ 
10.3382/ps/pex304. 

Lattin, C.R., Romero, L.M., 2014. Chronic stress alters concentrations of corticosterone 
receptors in a tissue-specific manner in wild house sparrows (Passer domesticus). 
J. Exp. Biol. 217, 2601–2608. 

Lattin, C.R., Romero, L.M., 2015. Seasonal variation in glucocorticoid and 
mineralocorticoid receptors in metabolic tissues of the house sparrow (Passer 
domesticus). Gen. Comp. Endocrinol. 214, 95–102. 

Lattin, C.R., Waldron-Francis, K., Romero, L.M., 2013. Intracellular glucocorticoid 
receptors in spleen, but not skin, vary seasonally in wild house sparrows (Passer 
domesticus). Proc. Biol. Sci. 280, 20123033. 

Lattin, C.R., Breuner, C.W., Romero, L.M., 2016. Does corticosterone regulate the onset 
of breeding in free-living birds? The CORT-Flexibility Hypothesis and six potential 
mechanisms for priming corticosteroid function. Horm. Behav. 78, 107–120. https:// 
doi.org/10.1016/j.yhbeh.2015.10.020. 

Liebl, A.L., Martin, L.B., 2012. Exploratory behaviour and stressor hyper-responsiveness 
facilitate range expansion of an introduced songbird. Proc. Biol. Sci. 279, 
4375–4381. 

Liebl, A.L., Schrey, A.W., Richards, C.L., Martin, L.B., 2013. Patterns of DNA methylation 
throughout a range expansion of an introduced songbird. Integr. Comp. Biol. 53, 
351–358. 

Lopes, P.C., Wingfield, J.C., Bentley, G.E., 2012. Lipopolysaccharide injection induces 
rapid decrease of hypothalamic GnRH mRNA and peptide, but does not affect GnIH 
in zebra finches. Horm. Behav. 62 (2), 173–179. https://doi.org/10.1016/j. 
yhbeh.2012.06.007. 

Low, G.W., Chattopadhyay, B., Garg, K.M., Irestedt, M., Ericson, P., Yap, G., Tang, Q., 
Wu, S., Rheindt, F.E., 2018. Urban landscape genomics identifies fine-scale gene 
flow patterns in an avian invasive. Heredity. 120 (2), 138–153. https://doi.org/ 
10.1038/s41437-017-0026-1. 

Lowry, H., Lill, A., Wong, B.M., 2013. Behavioural responses of wildlife to urban 
environments. Biol. Rev. 88 (3), 537–549. https://doi.org/10.1111/brv.12012. 

Lu, Z., De Silva, A.O., Zhou, W., Tetreault, G.R., de Solla, S.R., Fair, P.A., Houde, M., 
Bossart, G., Muir, D.C.G., 2019. Substituted diphenylamine antioxidants and 
benzotriazole UV stabilizers in blood plasma of fish, turtles, birds and dolphins from 
North America. Sci. Total Environ. 647, 182–190. https://doi.org/10.1016/j. 
scitotenv.2018.07.405. 

Luther, D., Baptista, L., 2010. Urban noise and the cultural evolution of bird songs. Proc. 
Biol. Sci. 277 (1680), 469–473. https://www.jstor.org/stable/40506142.  

Lynn, S.E., Kern, M.D., Fitzgerald, K., Will, A., Kitaysky, A., 2022. Cooling increases 
corticosterone deposition in feathers of eastern bluebird chicks. Gen. Comp. 
Endocrinol. 320, 114001 https://doi.org/10.1016/j.ygcen.2022.114001. 

Marrow, J., Whittington, J.K., Mitchell, M., Hoyer, L.L., Maddox, C., 2009. Prevalence 
and antibiotic-resistance characteristics of Enterococcus spp. isolated from free- 
living and captive raptors in central Illinois. J. Wildl. Dis. 45 (2), 302–313. https:// 
doi.org/10.7589/0090-3558-45.2.302. 

Martin, L.B., 2009. Stress and immunity in wild vertebrates: timing is everything. Gen. 
Comp. Endocrinol. 163 (1), 70–76. https://doi.org/10.1016/j.ygcen.2009.03.008. 

Martin, R.J., Kruger, M.C., MacDougall-Shackleton, S.A., Sherry, D.F., 2020. Black- 
capped chickadees (Poecile atricapillus) use temperature as a cue for reproductive 
timing. General and Comparative Endocrinology 287, 113348. https://doi.org/ 
10.1016/j.ygcen.2019.113348. 

Mattmann, P., Marti, H., Borel, N., Jelocnik, M., Albini, S., Vogler, B.R., 2019. 
Chlamydiaceae in wild, feral and domestic pigeons in Switzerland and insight into 
population dynamics by Chlamydia psittaci multilocus sequence typing. PLoS One 
14 (12), e0226088. https://doi.org/10.1371/journal.pone.0226088. 

McGraw, K.J., Chou, K., Bridge, A., McGraw, H.C., McGraw, P.R., Simpson, R.K., 2020. 
Body condition and poxvirus infection predict circulating glucose levels in a colorful 
songbird that inhabits urban and rural environments. J. Exp. Zool. 333A, 561–568. 
https://doi.org/10.1002/jez.2391. 

McKechnie, A.E., Gerson, A.R., Wolf, B.O., 2021. Thermoregulation in desert birds: 
Scaling and phylogenetic variation in heat tolerance and evaporative cooling. J. Exp. 
Biol. 224 (Pt Suppl 1), jeb229211. https://doi.org/10.1242/jeb.229211. 

McKinney, M.L., 2002. Urbanization, biodiversity, and conservation: the impacts of 
urbanization on native species are poorly studied, but educating a highly urbanized 
human population about these impacts can greatly improve species conservation in 
all ecosystems. BioSci. 52 (10), 883–890. https://doi.org/10.1641/0006-3569 
(2002)052[0883:UBAC]2.0.CO;2. 

McKinney, M.L., 2006. Urbanization as a major cause of biotic homogenization. Biol. 
Conserv. 127, 247–260. https://doi.org/10.1016/j.biocon.2005.09.005. 

McNew, S.M., Beck, D., Sadler-Riggleman, I., Knutie, S.A., Koop, J.A.H., Clayton, D.H., 
Skinner, M.K., 2017. Epigenetic variation between urban and rural populations of 
Darwin’s finches. BMC Evol. Biol. 17 (1), 183. https://doi.org/10.1186/s12862-017- 
1025-9. 

Meillère, A., Brischoux, F., Ribout, C., Angelier, F., 2015a. Traffic noise exposure affects 
telomere length in nestling house sparrows. Biol. Lett. 11 (9), 20150559. https://doi. 
org/10.1098/rsbl.2015.0559. 

Meillère, A., Brischoux, F., Parenteau, C., Angelier, F., 2015b. Influence of urbanization 
on body size, condition, and physiology in an urban exploiter: a multi-component 

approach. PLoS One 10 (8), e0135685. https://doi.org/10.1371/journal. 
pone.0135685. 

Meillère, A., Brischoux, F., Bustamante, P., Michaud, B., Parenteau, C., Marciau, C., 
Angelier, F., 2016. Corticosterone levels in relation to trace element contamination 
along an urbanization gradient in the common blackbird (Turdus merula). Sci. Total 
Environ. 566-567, 93–101. https://doi.org/10.1016/j.scitotenv.2016.05.014. 

Mills, R., McGraw, K.J., 2021. Cool birds: facultative use by an introduced species of 
mechanical air conditioning systems during extremely hot outdoor conditions. Biol. 
Lett. 17 (3), 20200813 https://https://doi.org/10.1098/rsbl.2020.0813.  

Miranda, A.C., Schielzeth, H., Sonntag, T., Partecke, J., 2013. Urbanization and its effects 
on personality traits: a result of microevolution or phenotypic plasticity? Glob. 
Chang. Biol. 19 (9), 2634–2644. https://doi.org/10.1111/gcb.12258. 

Mishra, I., Knerr, R.M., Stewart, A.A., Payette, W.I., Richter, M.M., Ashley, N.T., 2019. 
Light at night disrupts diel patterns of cytokine gene expression and endocrine 
profiles in zebra finch (Taeniopygia guttata). Sci. Rep. 9 (1), 15833. https://doi.org/ 
10.1038/s41598-019-51791-9. 

Moagi, L.L., Bourne, A.R., Cunningham, S.J., Jansen, R., Ngcamphalala, C.A., 
Ganswindt, A., Ridley, A.R., McKechnie, A.E., 2021. Hot days are associated with 
short-term adrenocortical responses in a southern African arid-zone passerine bird. 
J. Exp. Biol. 224 (10), jeb242535. https://doi.org/10.1242/jeb.242535. 

Moaraf, S., Vistoropsky, Y., Pozner, T., Heiblum, R., Okuliarova, M., Zeman, M., 
Barnea, A., 2020a. Artificial light at night affects brain plasticity and melatonin in 
birds. Neurosci. Lett. 716, 134639 https://doi.org/10.1016/j.neulet.2019.134639. 

Moaraf, S., Heiblum, R., Vistoropsky, Y., Okuliarova, M., Zeman, M., Barnea, A., 2020b. 
Artificial light at night increases recruitment of new neurons and differentially 
affects various brain regions in female zebra finches. Int. J. Mol. Sci. 21 (17), 6140. 
https://doi.org/10.3390/ijms21176140. 

Moaraf, S., Heiblum, R., Okuliarova, M., Hefetz, A., Scharf, I., Zeman, M., Barnea, A., 
2021. Evidence that artificial light at night induces structure-specific changes in 
brain plasticity in a diurnal bird. Biomolecules. 11 (8), 1069. https://doi.org/ 
10.3390/biom11081069. 

Moller, A.P., Ibanez-Alamo, J.D., 2012. Escape behavior of birds provides evidence of 
predation being involved in urbanization. Anim. Behav. 84 (2), 341–348. https:// 
doi.org/10.1016/j.anbehav.2012.04.030. 

Morakchi, H., Loucif, L., Gacemi-Kirane, D., Rolain, J.M., 2017. Molecular 
characterisation of carbapenemases in urban pigeon droppings in France and 
Algeria. J. Glob. Antimicrob. Resist. 9, 103–110. https://doi.org/10.1016/j. 
jgar.2017.02.010. 

Morrissey, C.A., Stanton, D.W., Tyler, C.R., Pereira, M.G., Newton, J., Durance, I., 
Ormerod, S.J., 2014. Developmental impairment in eurasian dipper nestlings 
exposed to urban stream pollutants. Environ. Toxicol. Chem. 33 (6), 1315–1323. 
https://doi.org/10.1002/etc.2555. 

Mueller, J.C., Partecke, J., Hatchwell, B.J., Gaston, K.J., Evans, K.L., 2013. Candidate 
gene polymorphisms for behavioural adaptations during urbanization in blackbirds. 
Mol. Ecol. 22 (13), 3629–3637. https://doi.org/10.1111/mec.12288. 

Mueller, J.C., Kuhl, H., Boerno, S., Tella, J.L., Carrete, M., Kempenaers, B., 2018. 
Evolution of genomic variation in the burrowing owl in response to recent 
colonization of urban areas. Proc. Biol. Sci. 285 (1878), 20180206. https://doi.org/ 
10.1098/rspb.2018.0206. 

Mueller, J.C., Carrete, M., Boerno, S., Kuhl, H., Tella, J.L., Kempenaers, B., 2020. Genes 
acting in synapses and neuron projections are early targets of selection during urban 
colonization. Mol. Ecol. 29 (18), 3403–3412. https://doi.org/10.1111/mec.15451. 

Mulholland, T.I., Ferraro, D.M., Boland, K.C., Ivey, K.N., Le, M.L., LaRiccia, C.A., 
Vigianelli, J.M., Francis, C.D., 2018. Effects of experimental anthropogenic noise 
exposure on the reproductive success of secondary cavity nesting birds. Integr. 
Comp. Biol. 58, 967–976. https://doi.org/10.1093/icb/icy079. 

Nair, A., Pillai, M.K., 1992. Trends in ambient levels of DDT and HCH residues in humans 
and the environment of Delhi, India. Sci. Total Environ. 121, 145–157. https://doi. 
org/10.1016/0048-9697(92)90312-g. 

Names, G.R., Krause, J.S., Schultz, E.M., Angelier, F., Parenteau, C., Ribout, C., Hahn, T. 
P., Wingfield, J.C., 2021. Relationships between avian malaria resistance and 
corticosterone, testosterone and prolactin in a Hawaiian songbird. Gen. Comp. 
Endocrinol. 308, 113784 https://doi.org/10.1016/j/ygcen.2021.113784. 

Naveed, A., Ali, S., Ahmed, H., Simsek, S., Rizwan, M., Kaleem, I., Gondal, M.A., 
Shabbir, A., Pervaiz, F., Khan, M.A., Nadeem, M.S., Afzaal, M.S., Umar, S., 2019. 
Seroprevalence and risk factors of Toxoplasma gondii in wild Birds of Punjab 
Province, Pakistan. J. Wildl. Dis. 55 (1), 129–135. https://doi.org/10.7589/2017- 
09-228. 
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Hildebrand, J., Kicia, M., 2017. Survey for zoonotic microsporidian pathogens in 
wild living urban rooks (Corvus frugilegus). J. Eukaryot. Microbiol. 64 (5), 721–724. 
https://doi.org/10.1111/jeu.12402. 

Perfito, N., Bentley, G., Hau, M., 2006. Tonic activation of brain GnRH immunoreactivity 
despite reduction of peripheral reproductive parameters in opportunistically 
breeding zebra finches. Brain Behav. Evol. 67 (3), 123–134. https://doi.org/ 
10.1159/000090977. 

Perfito, N., Kwong, J.M., Bentley, G.E., Hau, M., 2008. Cue hierarchies and testicular 
development: is food a more potent stimulus than day length in an opportunistic 
breeder (Taeniopygia g. guttata)? Horm. Behav. 53, 567–572. https://doi.org/ 
10.1016/j.yhbeh.2008.01.002. 

Pigliucci, M., 2001. Phenotypic plasticity: beyond nature and nurture, 356 p,. The Johns 
Hopkins University press, USA, 356 pp.  

Plourde, S.P., Moreau, R., Letcher, R.J., Verreault, J., 2013. Is the bone tissue of ring- 
billed gulls breeding in a pollution hotspot in the St. Lawrence River, Canada, 
impacted by halogenated flame retardant exposure? Chemosphere 93 (10), 
2333–2340. https://doi.org/10.1016/j.chemosphere.2013.08.030. 

Prinzinger, R., Preßmar, A., Schleucher, E., 1991. Body temperature in birds. Comp. 
Biochem. Physiol. 99A (4), 499–506. https://doi.org/10.1016/0300-9629(91) 
90122-S. 

Prior, N.H., Heimovics, S.A., Soma, K.K., 2013. Effects of water restriction on 
reproductive physiology and affiliative behavior in an opportunistically-breeding 
and monogamous songbird, the zebra finch. Horm. Behav. 63 (3), 462–474. https:// 
doi.org/10.1016/j.yhbeh.2012.12.010. 
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