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As human activities increasingly shape land- and seascapes, understanding 
human–wildlife interactions is imperative for preserving biodiversity. 
Habitats are impacted not only by static modifications, such as roads, 
buildings and other infrastructure, but also by the dynamic movement 
of people and their vehicles occurring over shorter time scales. Although 
there is increasing realization that both components of human activity 
substantially affect wildlife, capturing more dynamic processes in ecological 
studies has proved challenging. Here we propose a conceptual framework 
for developing a ‘dynamic human footprint’ that explicitly incorporates 
human mobility, providing a key link between anthropogenic stressors and 
ecological impacts across spatiotemporal scales. Specifically, the dynamic 
human footprint integrates a range of metrics to fully acknowledge the 
time-varying nature of human activities and to enable scale-appropriate 
assessments of their impacts on wildlife behaviour, demography and 
distributions. We review existing terrestrial and marine human-mobility 
data products and provide a roadmap for how these could be integrated  
and extended to enable more comprehensive analyses of human impacts  
on biodiversity in the Anthropocene.

Although humans have reshaped planet Earth for millennia, current 
impacts of anthropic activities are staggering1. More than half of the 
Earth’s surface—70% on land and 57% at sea—has been substantially 
altered by human activities2–5 driving major changes in the behav-
iour, distribution and viability of wildlife populations6,7. Despite the 
negative consequences for biodiversity as a whole, a growing body 
of evidence suggests that behavioural plasticity and natural selec-
tion may enable adaptation to a changing world, even allowing some 
species to thrive in the Anthropocene8,9. The variable responses of 
wildlife to anthropogenic stressors indicate that the mechanisms 
governing human–wildlife interactions and coexistence are complex 
and context-dependent. As human pressures continue to increase, 

there is an urgent need to understand how wildlife copes with current 
levels of human activity.

To study wildlife responses to human activities, ecologists have 
typically leveraged estimates of various aspects of anthropogenic 
influence, such as land development or human population density10–12. 
Integrated metrics of the human footprint have been widely useful in 
assessing the condition of ecosystems and protected areas globally and 
in predicting population trends and extinction risks by incorporating 
the many dimensions of human activities11,13–17. Though critical, the 
dynamic presence of humans and their vehicles (human mobility18) 
is often not captured by current approaches. Although landscape 
modification is a well-known driver of biodiversity loss, human mobility 
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effects on wildlife. But doing so requires ecologists to understand the 
accessibility, underpinning and limitations of human-mobility data 
products. Although a handful of recent studies have begun integrating 
datasets reflecting static and dynamic components of human activity, 
they have been restricted to local and regional scales22,23, and their 
methods are not yet applicable to many other areas across the world, 
particularly in the Global South.

Here, we present a conceptual framework for integrating human 
mobility with other components of human activity into a multiscale 
dynamic human footprint. This vision builds on a rich literature quan-
tifying human impacts on the planet24–26, extending it by explicitly 
incorporating the movements of humans and their vehicles. Our frame-
work is ‘dynamic’ in two senses: first, in that it considers time-varying 
information on human mobility and, second, in terms of allowing 
flexible data aggregation across a suite of human activities (Fig. 1). We 
review existing terrestrial and marine human-mobility data products 
that are of relevance to the ecological research community but have 
not yet been widely adopted (Figs. 2 and 3, Supplementary Table 1). 
Using recent empirical examples, we then demonstrate how emerging 
metrics of human mobility enable refined investigations of anthropo-
genic impacts on wildlife behaviour, demography and distribution. 
We conclude with a set of recommendations for how the ecological 
community and other stakeholders can make progress towards inte-
grating a variety of human mobility metrics to achieve a comprehensive 
analysis of human impacts on biodiversity in the Anthropocene (Fig. 4).

Measuring human mobility
Here, we outline the main approaches for measuring the dynamic 
movement of humans and their vehicles. In 2021, mobile-phone sub-
scriptions topped 8 billion worldwide, with over 6 billion of those 
subscriptions being registered to smartphones27. The proliferation of 
mobile devices means that we can capture human-mobility data across 

may also exert additional pressure on wildlife. Human mobility may 
represent a key link between anthropogenic stressors and ecological 
impacts by driving behavioural or demographic responses that scale up 
to consequences at the species level. However, information on human 
mobility has yet to be widely adopted in wildlife studies or integrated 
metrics of the human influence on nature.

As the COVID-19 pandemic unfolded, researchers started explor-
ing opportunities to leverage human-mobility data products to exam-
ine how wildlife responded to lockdowns19. Until then, the ecological 
research community had been largely unaware of advances in meas-
uring human mobility, which were driven by decades of work in other 
disciplines (for example, transportation, population geography, 
computer science, physics, public health and geographic informa-
tion science) and the private sector20. The importance of monitoring 
and managing human movements to stem the spread of COVID-19 
(for example, via social distancing and travel restrictions21) spurred 
some companies to make human-mobility data publicly available. This 
increased data accessibility created exciting opportunities for ecolo-
gists to investigate more comprehensively how wildlife is affected by 
humans—both during and after the COVID-19 anthropause. Human 
mobility has multiple components18. We consider human mobility 
to encompass the movements of humans and their vehicles (and any 
associated by-products in the environment), along the full spectrum 
of spatiotemporal resolutions. This is distinguished from human 
infrastructure, which encompasses roads, buildings and additional 
anthropogenic landscape modifications (and their associated 
by-products). Figure 1 provides a schematic overview of key concepts 
and terminology.

In this contribution, we argue that high-resolution human-mobility 
data should be combined with more conventional static measures (for 
example, population density and land-cover maps) to capture the 
multidimensional, dynamic nature of human activity and its complex 
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Fig. 1 | Motivation for the development of a dynamic human footprint. 
Left, the static and dynamic components of human activity. In contrast to 
static landscape modifications (for example, roads and buildings), human 
mobility encompasses the dynamic movement of humans and their vehicles. 
Drivers are quantified as a set of observed variables, ranging from relatively 
static assessments of infrastructure and population density to highly dynamic 
approximations of human mobility and aggregated products. These variables 
can then be used to examine potential ecological responses along a range of 
spatiotemporal scales. Right, the ecological scales that may be appropriate 

for each observed variable as dictated by each variable’s associated 
spatiotemporal resolution. Approximate spatiotemporal resolution of 
example datasets and their corresponding ecological scale are indicated.  
The dashed rectangle highlights the current lack of publicly available datasets 
with high spatiotemporal resolution. For more details on a representative 
set of data sources, see Supplementary Table 1. CCI, Climate Change 
Initiative; SEDAC, Socioeconomic Data and Applications Center; TROPOMI, 
Tropospheric Monitoring Instrument; VMS, vessel monitoring system.
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broad spatial and temporal extents in most areas that are inhabited 
by people. Location data are now commonly collected using mobile 
phones relying on onboard GPS (Global Positioning System) receivers 
or by identifying the network node (Wi-Fi or cellular network tower) 
they are connected to20,28. Location-based mobile-phone services, such 
as real-time weather, social media and fitness applications, similarly 
collect high-resolution location data from their users29. The spatiotem-
poral resolution and continuity of these data vary greatly between 
technologies. Whereas GPS can yield accurate geographic coordinates, 
cellular tower networks provide data at spatial resolutions varying 
from very accurate in urban settings to relatively coarse in rural areas, 
depending on local network coverage. Furthermore, various types of 
human-mobility data vary in their temporal resolution. Data from cel-
lular networks are often more temporally continuous than GPS data 
collected from smart-phone applications.

Although network and technology companies collect individually 
identifiable information, they do not typically make raw mobile-phone 
data (publicly) available because of geoprivacy concerns and com-
pliance with national and international regulations (for example, 
General Data Protection Regulation of the European Union). Instead, 
human-location data are anonymized or aggregated to prevent the 
identification of individuals30. Mobile-network data are often aggre-
gated into origin–destination flows, which provide information on how 
many users moved between two given geographic areas, such as the 
areas served by two mobile-phone towers31. Importantly, the quality 
of the estimates of human mobility derived from mobile-phone data 
varies based on the number of devices contributing data and, there-
fore, becomes less accurate in more sparsely populated regions. This 
is compounded by the fact that access to and usage of mobile devices 
vary across the globe21 and that users of mobile phones, and of differ-
ent applications, vary geographically and in terms of their sociode-
mographic characteristics32. Mobile-phone uptake rates vary greatly 
within and among countries, undercounting rural populations33. 

Therefore, human-location data have inherent spatial, temporal and 
sociodemographic biases and may be especially limited in character-
izing activities in rural areas34.

Mobile-phone-tracking logs remain one of the most challenging 
data sources to access. Some of these challenges stem from legitimate 
concerns over data privacy. However, there is an increasingly large 
industry of private intermediary providers that charge for access to 
aggregated mobility indicators (for example, Near Mobility, Outlogic 
and SafeGraph). In response to the COVID-19 pandemic, a number 
of private companies started making large amounts of anonymized 
human-mobility data publicly accessible. Human-location data derived 
from mobile phones have been widely used, for example, to plan and 
study the impact of government restrictions on human mobility dur-
ing the pandemic35. Research applications of these data, however, are 
constrained by fairly rigid data formats (for example, aggregation or 
use of fixed reference baseline), which limit the potential for reprocess-
ing36. For example, in the case of Google Mobility products, estimates 
of human use of ‘greenspaces’ combine national and local parks into a 
single index, which may obscure ecological responses. Perhaps most 
importantly, there is limited clarity on the long-term support of these 
public products, making research planning difficult and future replica-
tion attempts impossible. In some cases, researchers have started work-
ing directly with mobile-phone network operators to overcome these 
issues. The European Commission has asked national mobile-network 
providers to release their network data to its Joint Research Centre to 
build a COVID-19-mobility dashboard37. In general, there is considerable 
scope for strengthening collaboration between the collectors and hold-
ers of large human-mobility datasets and the wider research community.

An alternative to mobile-phone-based approaches are data relat-
ing to various types of transport. For example, vehicular transportation 
data have been used during the COVID-19 pandemic to explore changes 
in flow of vehicular traffic38 and cycling behaviour, as local authori-
ties provided additional space for recreation39. These types of data 
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Fig. 2 | Measuring the dynamic human footprint. a,b, Selected examples 
of datasets quantifying human activities in the terrestrial (a) and marine (b) 
realms. Spatiotemporal resolutions are presented qualitatively for comparison 
purposes only. Icons indicate the respective variable type, corresponding to 
those introduced in Fig. 1. a, Staten Island, New York (March–May 2020). Top row 
(left to right), mobility report at the community level (Google), tropospheric NO2 
(Sentinel-5 TROPOMI), Human Footprint Index10. Middle row (left to right),  

night lights (NASA VIIRS), land-cover type (United States Geological Survey). 
Bottom row, (left to right), human mobility (SafeGraph), recreational activity 
(Strava Metro), population density (United States Census Bureau), road network 
(United States Census Bureau). b, English Channel (December 2019). Cumulative 
human pressures (top)3; fishing effort (Global Fishing Watch, middle); boat 
detection (NASA VIIRS, bottom).
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are commonly accessible through open data portals housed by local 
municipalities (for example, https://tfl.gov.uk/info-for/open-data- 
users/our-open-data?intcmp=3671 and https://www1.nyc.gov/site/tlc/ 
about/tlc-trip-record-data.page) or national authorities, presenting a 
major advantage over mobile-phone data in terms of accessibility. The 
main disadvantage of these datasets is that they are typically collected 
idiosyncratically at specific locations, most often in urban environ-
ments, making them unsuitable for studies in more remote areas or at 
larger geographic scales (for example, ref. 40). Other types of human 
mobility, such as those related to agriculture, forestry and hunting, are 
either documented through land-cover proxies or left uncharacterized.

In contrast to the more regional nature of data collection in ter-
restrial realms, marine traffic is monitored globally by the automatic 
identification system (AIS)—an anti-collision network that combines 
transceivers on ships and both in situ and satellite radar receivers to 
monitor ships’ locations. AIS data are available through private com-
panies and governmental institutions. For example, European marine 
data can be requested through the SafeSeaNet initative. These data 
have been used to study the impacts of vessel traffic, and resultant noise 
pollution, on wildlife41, as patterns of global fishing effort42,43, and the 

global reduction of marine traffic during the COVID-19 anthropause44. 
Marine traffic has also been monitored with night-light data from Vis-
ible Infrared Imaging Radiometer Suite (VIIRS) and VIIRS Boat Detec-
tion across scales, from individual vessel detections per night to annual 
summary grids of detection tallies and average radiances45. The global 
scale of marine data that are available at relatively fine spatiotemporal 
resolution, coupled with their good accessibility, provide ecologists 
with opportunities for broad-scale analyses that presently are out of 
reach for terrestrial studies. That said, activities such as recreational 
fishing cannot currently be assessed at local scales, limiting our under-
standing of reported increases in recreational marine human activities 
during the COVID-19 pandemic46.

Air traffic can be tracked through data on the total number of 
flights by FlightRadar24. Additionally, data on passenger flows are 
available for Europe through the European Union Open Data Portal, 
for the USA through the International Civil Aviation Organization 
COVID-19 Air Traffic Dashboard, and for 35,000 city-pairs around the 
world through the Civil Aviation Data Solutions portal. Air traffic was 
severely impacted during the COVID-19 pandemic, with temporary, 
but significant, reductions in commercial flights47,48.

Terrestrial

Marine

Onset of COVID-19 pandemic

Community Mobility Report (Google)

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

Cumulative pressures (ref. 4)
Ocean Health Index (ref. 105)

Mineral extraction (International Seabed Authority)

Automatic Identification System (Multiple)
Automatic Identification System (Global Fishing Watch)

VIIRS Boat Detection (NASA/Suomi VIIRS)

Human modification (ref. 3)

Global Human Modification (ref. 25)

Human Footprint Index (ref. 11)

Global land cover (ESA CCI)

Global land cover (MODIS)

Global Urban Footprint (TerraSar-X + Tandem)

Global land cover (Copernicus)

Tropospheric NO2 (Sentinel-5 TROPOMI)

Black Marble (NASA VIIRS)

Night-time lights (NASA VIIRS)

Commercial air tra�ic (Flightradar24)

Population density (NASA/SEDAC)

Global heatmap (Strava)

Strava Metro (Strava)

Population density (Facebook)

Mobility data (SafeGraph)

Mobility data (Mapbox)

Traveler Analysis (Cuebiq)

Mobility Index (Cuebiq)

Contact Index (Cuebiq)

Commuting zones (Facebook)

Movement Range Maps (Facebook)

Social Connectedness Index (Facebook)

Social Mobility Index (Twitter)

Mobility Trends Report (Apple)
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as introduced in Fig. 1. For details on the spatiotemporal resolution and extent 
of terrestrial, aerial and marine datasets, see Supplementary Table 1. MODIS, 
Moderate Resolution Imaging Spectroradiometer.
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Complementary satellite-sensed data on artificial night lights 
and other by-products, such as nitrogen dioxide from fossil fuel com-
bustion, have been used to measure aspects of human activity49,50. 
For example, artificial night lights have been used for mapping both 
vehicles and infrastructure, from maritime traffic to whole cities50,51. 
However, these products only capture activities that occur at night 
and produce high-powered lighting, which must be taken into con-
sideration when charting spatiotemporal patterns in human mobility. 
These data are available directly from the NASA (National Aeronaut-
ics and Space Administration) Earth Data centre. Daily satellite data 
on concentrations of various atmospheric gasses have global cov-
erage52 and are also available from the NASA Earth Data centre and 
from the Sentinel-5 Precursor satellite of the European Space Agency 
(ESA). For example, the TROPOMI sensor on-board of the Sentinel-5  
Precursor satellite provides measurements of atmospheric gases, 

including the most common anthropogenic pollutants, such as NOx, 
SO2 and ozone. Satellite-recorded night-time images indicated dim-
ming of light in China50, and NO2 data documented decreases in pollu-
tion levels across European cities because of COVID-19-related changes 
in human activity45,53. One obvious limitation of by-product analyses is 
that it is challenging to estimate the relative contributions of dynamic 
and static components of human activity, which—as we have argued 
above—is key for advancing our understanding of ecological impacts.

Inputs to a dynamic human footprint
In isolation, each of the data types discussed above provide a valu-
able window into how humans use different spaces over time, but in 
combination, they reveal the diversity of our impacts on the environ-
ment. Current approaches to mapping the global influence of humans, 
particularly the Human Footprint Index11 and the Human Modification 

Policymakers

User community

Inputs

Human
mobility

Recreational
activity

Population
density

Land cover
or use

Transit
activity

Light and sound
pollution

Transit
networks

By-product
pollution

Aggregate
products

Dynamic products

Variable 
selection

Process

Data fusion and 
interpolation

Sociocultural 
context

Unified terminology 
and standardization

Geoprivacy and
quality control

Data support and
transparency

Research
collaborations

Flexible aggregation
Estimates of human activity:

Commercial

Recreational

Time

Time varyingFlexible spatiotemporal resolution

Local

Global

Daily

Annual

Coarse

Fine

Research
community

Conservation
practitioners

Fig. 4 | Constructing the dynamic human footprint. A framework for a 
dynamic human footprint, leveraging a suite of input variables quantifying 
human mobility and infrastructure. Fundamental to achieving this vision 
is an integration process that begins by allowing users to select the human-
activity variables relevant to their application target. Dynamic measures of 
human mobility are primarily held by private companies; their use depends 
on continued support to make them available to the research community 
(post-pandemic), transparency about data collection and processing, and 
robust protocols to ensure geoprivacy and quality control. Cross-disciplinary 
collaboration will be necessary for developing the methodologies necessary 

for integrating disparate datasets across spatiotemporal resolutions. This in 
turn will require a unified terminology, to discuss the various components of 
human activity, and will be greatly assisted by adopting a standardized schema 
of data-processing levels, to distinguish raw data from modelled or aggregated 
data products. In many cases, data fusion or interpolation approaches will be 
needed for areas where human-mobility data are unavailable, which consider the 
underlying sociocultural context. This process will generate a suite of products 
that are inherently dynamic, both in terms of their flexible aggregation and their 
ability to generate time-varying estimates of human activity.
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map25, aggregate multiple aspects of the built environment—includ-
ing infrastructure, land use and transportation networks—along with 
static estimates of human population density and distribution. These 
indices have been used extensively, and very productively, for assessing 
wilderness loss, protected area effectiveness and wildlife responses to 
human encroachment (for example, refs. 12,15,54–56). Recent advances 
in machine learning mean that human footprint maps may be generated 
more rapidly, allowing for greater temporal resolution57. Considering 
the increasing availability of high-quality human-mobility datasets, we 
see an opportunity for extending the concept: developing a vision for a 
framework for quantifying humans’ dynamic footprint on Earth would 
allow for the investigation of ecological processes (for example, wild-
life movement and related behaviours) that occur over much shorter 
time scales (for example, integrating data over a migratory journey 
that lasts a few weeks, rather than across years or longer periods, as 
current measures do).

Our proposed dynamic human footprint incorporates the multi-
ple ways in which humans affect environments, by aggregating both 
static and dynamic metrics spanning the full range of spatiotemporal 
scales. Importantly, rather than computing a single index, we envision 
a modular set of products that can be tailored to the specific research 
question and ecological responses under investigation (Fig. 1).

The underlying datasets supporting these footprint estimates 
depend on which drivers and spatiotemporal resolutions are required 
to link different types of human activity to ecological processes. 
Questions related to distributional changes for wildlife may require 
a global-scale, coarse-grained, human-footprint estimate42, whereas 
questions related to behavioural responses would necessitate a fine- 
grained approach, potentially limited to select locales (for example, 
ref. 22) (Fig. 1). For example, understanding behavioural responses 
of animals to COVID-19 lockdowns would benefit from quantifying 
changes in human mobility at high spatiotemporal resolutions (for 
example, metres and hours)19,58. If conducted globally, the footprint 
estimates for such a study would require all underlying datasets to have 
global extent or rely on modelling approaches for appropriate inter-
polation. By contrast, a study with a more limited geographic scope 
would be able to leverage datasets that are only available locally, such 
as municipal traffic-flow estimates. In general, our review in the previ-
ous section reveals a striking lack of widely available human-mobility 
data products that could be used to address ecological responses at 
finer spatiotemporal scales (Fig. 1).

The development of such products would ideally be based on the 
data-processing levels employed by the NASA Earth Observing System 
Data and Information System and the ESA’s Earth observation data 
access portal. Under this system, data products are classified along a 
scale from raw, unprocessed data (level 0) to corrected data (level 1),  
derived variables (levels 2–3), and, ultimately, modelled outputs 
(level 4). In the context of a dynamic human footprint, each dataset 
would be rated corresponding to its processing level. For example, 
unstandardized mobile-device counts may be considered a level 0 
product, whereas population-density estimates may be considered a 
level 3 product. Combined datasets, such as daily aggregate products 
of human mobility, would be given a level 4 distinction, to indicate their 
synthetic nature. A critical challenge in this process will be appropri-
ately measuring the uncertainty propagated from underlying data 
sources to derived products.

As noted above, aggregating across data types will be at the core 
of the dynamic human footprint (Fig. 4). When integrating datasets 
with similar spatiotemporal resolutions and extents, we propose fol-
lowing previous approaches that rely on standardizing values within 
and among datasets (for examples, refer to refs. 11,25). This step alone 
is not necessarily straightforward, as it requires handling mismatches 
in resolutions and a nuanced understanding of the rescaling methods 
appropriate for different data types. However, we also envision sce-
narios in which the variables of interest are not readily available across 

the full extent required, necessitating more sophisticated methodolo-
gies for interpolation. This would apply, for example, to high-resolution 
transit or human-mobility data that are not currently available at global, 
or even regional, scales (see above). It may be possible to compute 
finer-scale human-mobility estimates by modelling statistical rela-
tionships between coarse mobility data and satellite-sensed auxiliary 
data, which serve as a proxy for finer-scale movement59,60. But this 
would probably involve the use of complex data-fusion methods and 
modelling techniques, including Bayesian approaches, for leveraging 
the respective best qualities of different human-mobility datasets59,61.

For example, data on the fine-scale spatial structure of outdoor 
recreation activity as delivered by fitness apps such as Strava could 
be combined with mobile-phone data (for example, Google Mobility 
reports) to generalize the temporal dynamics of such activities22. In 
general, such approaches need to be employed cautiously, as human 
mobility is linked, as we had noted above, to a complex set of cultural, 
sociodemographic and environmental factors that vary geographi-
cally and must be accounted for62,63. Aggregating across data types will 
require explicit and careful consideration of the underlying sources 
of uncertainty and potentially compounding biases. For example, 
estimating population density by downscaling census data using 
mobile-phone call records compared with using remote-sensing data 
has been shown to have opposing trade-offs in accuracy and precision33. 
Remote-sensing-based approaches underestimate population density 
in dense areas and overestimate it in less populated areas, whereas the 
opposite has been found for mobile-phone data33. However, combin-
ing methods delivered overall improved accuracy33. Therefore, users 
should carefully assess the systematic uncertainty and biases of differ-
ent data types and, as much as possible, leverage the complementarity 
of data sources and types through integration.

In the following sections, we use recent empirical examples to 
showcase how a dynamic human footprint could be employed to 
advance our understanding of human–wildlife interactions and their 
effects on behaviour, demography and distributions. The datasets 
used in these case studies remain limited in their applicability and 
availability: at fine scales, they are often collected idiosyncratically 
(for example, AIS64), whereas at coarse scales, they remain relatively 
rough proxies of human activity. Therefore, we see these examples as 
demonstrating the need for a dynamic human footprint that enables 
research on human–wildlife interactions at appropriate—and as yet 
largely unachieved—spatiotemporal scales.

Behavioural responses
The ‘ecology of fear’ hypothesis suggests that the risk of predation alters 
prey behaviour and physiology in the absence of direct mortality65.  
A ‘landscape of fear’ is a species’ perception of the spatiotempo-
ral patterns of that risk as a result of predator activity66. Because 
many animals are thought to perceive humans as super predators67, 
the landscape of fear hypothesis predicts that animals will avoid 
human-occupied areas in a similar fashion as they might avoid areas 
frequented by predators68,69. Such human avoidance can manifest 
in both spatial and temporal shifts in activity. For example, many 
animals become more nocturnal in the presence of humans70, and 
some prey species select areas of high human mobility, to ‘shield’ 
themselves from predators (that is, the human shield hypothesis)71,72. 
Furthermore, the response may differ depending on the type of 
activity, such as the use of motorized versus non-motorized recrea-
tional vehicles73. As such, to study behavioural responses of wildlife, 
human-mobility datasets should have high temporal resolution to 
capture the dynamic nature of humans’ movements across habitats 
(Fig. 1; for example, sub-daily human mobility or traffic data that can 
be collected at <1-km2 resolution).

Implicitly or explicitly incorporating dynamic human-activity 
data can often help to understand animals’ behavioural responses. For 
example, by integrating land-cover and anthropogenic noise data, the 
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song frequency of white-crowned sparrows (Zonotrichia leucophrys) 
was found to increase in response to early COVID-19 lockdown in the 
San Francisco Bay area74. By contrast, great white sharks (Carcharodon 
carcharias) showed no change in space use at a seal colony in South 
Australia when cage-diving tourism operations paused for 51 days 
during lockdown75. By integrating dynamic human-mobility data, such 
as driving and walking76, researchers were able to demonstrate that 
mountain lions (Puma concolor) in California ventured deeper into 
urban areas during the COVID-19 pandemic. These studies demonstrate 
the impacts of reduced human mobility with little or no corresponding 
change in infrastructure, indicating that dynamic and static metrics 
are not redundant measures of human activity.

Demographic responses
Human activities can influence wildlife populations by affecting critical 
life history stages. Vital rates (for example, survival and fecundity) can 
be altered over a wide range of temporal scales (that is, days to years) 
and, therefore, require human-activity data of moderate spatiotempo-
ral resolution (Fig. 1). Human disturbance can occur even in areas with 
relatively intact habitat if they attract visitors pursuing recreational 
activities. Outdoor recreation differs substantially throughout the 
week (for example, weekends versus weekdays) and is often spatially 
heterogeneous, with some areas being used more frequently than 
others77. These differences in human mobility may have substantial 
impacts on demographic responses. For example, recreational use of 
beaches impacted piping plover (Charadrius melodus) demographics 
by lowering chick survival during weekends and in areas of intense use78. 
Roads, vehicle traffic and collisions also cause wildlife mortality79. Traf-
fic reductions during early COVID-19 lockdowns in central Europe led to 
sharp decreases in road mortality in large mammals, such as roe deer, 
but increased collisions with badgers indicating heterogeneous effects 
on demographic responses across species80. However, human impacts 
on demography must not necessarily be negative. For example, a sea-
bird colony in the Baltic was typically shielded by tourism from gulls and 
crows81. When tourism declined during COVID-19 lockdowns, visitation 
rates by white-tailed eagles (Haliaeetus albicilla) drastically increased, 
causing—through disturbance, rather than predation—a 26% decrease 
in the productivity of common murres (Uria aalge). These nuanced 
responses of species to human recreation highlight the importance 
of integrating spatially explicit and temporally dynamic information 
on human mobility into ecological studies.

Recent advances in detecting sensory pollutants are offering 
insights into how humans affect demographic processes of wildlife 
across larger scales82,83. For example, datasets on anthropogenic noise 
and artificial light sources across the USA were combined with citizen 
science bird observations to show that demographic responses to 
these pollutants, and adjustments in phenology84, depended on spe-
cies traits and habitats85. These results emphasize that the impacts of 
human activities are not uniform across species and that analyses must 
consider context dependence72,86. This is key to informing the design 
of effective conservation interventions83, such as reducing night-light 
emission during peak migration periods or limiting recreational activi-
ties during critical times of the breeding cycle87.

Distributional responses
Metrics that characterize the amount of static human infrastructure 
in an area are the predominant source of information used to study 
anthropogenic impacts on species distributions88,89. Interactions 
among static and dynamic components of human activity may deter-
mine the magnitude and direction of anthropogenic impacts on species 
abundances and distributions. For example, static (human population 
density and human footprint) and dynamic (human noise and artificial 
night light) data were coupled with information on bird observations 
around feeder locations to reveal impacts on the abundance of several 
bird and mammal species at continental scale23. Similarly, by combining 

the static Human Footprint Index with direct records of the presence 
of humans captured by camera traps, thresholds at which species with 
different traits are able to persist in human-dominated landscapes 
were identified90.

Although some changes in species distributions can occur 
abruptly over relatively short time periods, the ranges of individuals, 
populations and species are typically measured at coarser spatiotem-
poral resolutions. The integration of static and dynamic variables into 
a dynamic human footprint will allow us to more accurately predict 
how the distribution of species may change in response to human 
by-products (such as anthropogenic noise and artificial night lights) 
and human encroachment23,72,91. Modelling encroachment in a more 
detailed way may allow us to identify thresholds of anthropogenic 
development92 or human-mobility levels, beyond which animal popula-
tions cannot persist. For example, light pollution may lead to nocturnal 
species abandoning or avoiding areas that would otherwise be suit-
able72. This may aid our understanding of the ‘silent forest’ concept, 
which posits that species may be absent in an area because of human 
activities, despite having suitable environmental conditions.

The activities of humans are a major driver of species extinction 
and exert strong selective pressure on the evolution of species93. The 
ability to consistently map human modification showed that mam-
malian genetic diversity and effective population sizes are lower in 
urbanized areas when compared with natural areas, but less so for 
birds94. Furthermore, sociodemographic disparities, such as economic 
inequality and racial segregation, appear to reduce overall genetic 
diversity in terrestrial mammals, reptiles and amphibians95. A dynamic 
measure of human activities would allow quantifying the degree to 
which human activities may affect behavioural plasticity and evolution 
and more importantly allow a framework to document behavioural 
changes of wildlife across a gradient of human activities in both space 
and time. Such a dynamic measure would allow a much more detailed 
exploration than the urban–rural gradient, as some rural areas experi-
ence very high and consistent seasonal influx of humans.

A roadmap for data and collaboration needs
The successful development of a dynamic human footprint critically 
depends on closer collaboration among research communities, bet-
ter connecting insights and approaches from the fields of ecology, 
conservation biology, environmental science, geographic information 
science, remote sensing, human geography, transportation science 
and social science. To bring this vision to life will require engaging 
with a diverse array of government agencies, local authorities, policy-
makers and private industries. In the following sections, we provide a 
forward-looking vision for facilitating these interactions and for col-
laboratively tackling specific challenges.

Unify terminology
Productive collaboration will require a consistent, unified terminology 
for discussing concepts, methods, development goals and implementa-
tion strategies. We, therefore, urge the wider research community to 
adopt a standardized set of definitions. From an ecological perspec-
tive, terminology in this realm is complicated by the wide range of use 
cases and associated scales of analysis. Our proposed dynamic human 
footprint uses recently established definitions that clearly distinguish 
between static and dynamic components of human activity18.

Establish data standards
We encourage all parties that create and use human-mobility data to 
adopt a standardized representation and classification system for 
describing datasets, building upon approaches employed by the NASA 
Earth Observing System Data and Information System. Doing so would 
create transparency across scientific communities and correctly distin-
guish between raw data and modelled or aggregated products. Adopt-
ing an existing schema already in use would promote collaboration with 
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the remote-sensing community and other fields (such as the animal 
tracking community)96. Aligning the methods and data standardization 
used for human and animal tracking will be essential for future efforts to 
merge these data streams96. We also urge greater collaboration across 
disciplines to ensure that end users understand the limitations of data 
sources and select them based on appropriateness for their application 
as opposed to ease of access.

Commit to data sharing and long-term support
Commitments from private companies to continue making human- 
mobility data products freely available will be important for future stud-
ies on human–wildlife interactions in the Anthropocene. To date, most 
large data providers explicitly state that mobility reports are publicly 
available for a limited time to help to stem the spread of COVID-19, sug-
gesting that access may become restricted post-pandemic. Committing 
to data sharing and long-term support does not require releasing raw 
data and algorithms, which would raise privacy, ethical and commercial 
concerns. Anonymized, aggregated human-mobility data products can 
afford invaluable insights into human–wildlife interactions, and should 
be made available to the wider research community.

Increase transparency and flexibility in data aggregation
Considering that data preprocessing can have notable effects on 
research outcomes, we urge private companies to provide greater 
clarity about the methods used to generate currently available 
human-mobility data products. Furthermore, we recommend that a 
higher degree of flexibility be incorporated into aggregate products. 
Allowing researchers to select the temporal baseline and categorical 
binning of aggregate mobility products would enable comparisons 
across different data sources and support a much broader range of 
research applications. This is of particular relevance for studies of 
animal species that routinely cross national borders, such as migra-
tory species97,98.

Address social, demographic, economic and cultural factors
Socio-economic dimensions are increasingly being integrated into 
ecology and conservation research to demonstrate the myriad impacts 
of structural inequality99–101. Clearly, patterns in human mobility are 
driven by a complex set of social, economic and cultural factors. For 
example, the worldwide total activity of fishing vessels records its low-
est levels during the Chinese New Year, Christmas and New Year44. In 
the Middle East, the religious celebration of Ramadan, which typically 
greatly influences the mobility and behaviour of humans across large 
areas, was significantly disrupted during the COVID-19 pandemic102. We, 
therefore, urge close collaboration with human geographers and social 
scientists during the development of the dynamic human footprint.

Develop systems to monitor change
It will be important for policymakers and funding agencies to support 
research and private–public partnerships that enable a dynamic under-
standing of humans’ footprint on Earth. As the COVID-19 pandemic 
acutely illustrated, society was poorly prepared overall for changes in 
human behaviour on large scales and is still grappling to understand 
the implications across sectors. For example, how the COVID-19 pan-
demic has impacted biodiversity across the world, and thus affected 
progress towards the United Nations Sustainable Development Goals 
14 and 15 (life on water and life on Earth), remains mostly unknown 
(but see ref. 48). We, therefore, need to develop a higher degree of 
preparedness for mapping changes in human mobility and measuring 
their environmental impacts18.

Construct the dynamic human footprint
Being inherently dynamic in nature, the dynamic human footprint will 
require open-ended development. Therefore, this endeavour should 
embed flexibility with regard to choosing data sources and modelling 

approaches, accommodating any future advances. In many regions 
of the world, high-resolution data on human mobility will be nearly 
impossible to collect. This is because of a variety of factors including 
differences in the geographical distributions of human populations, 
socio-economic inequalities, technological infrastructure, seasonal-
ity, privacy concerns and geopolitics103. Therefore, globally, or even 
regionally, consistent maps of the dynamic human footprint will require 
modelling and data-fusion approaches, which are likely to pose sub-
stantial development challenges.

Conclusions
As the planet becomes increasingly crowded, we need to understand 
the complex interactions between humans and wildlife if we are to safe-
guard biodiversity for generations to come. Achieving this demands a 
rigorous accounting of the multidimensional aspects of human activ-
ity. We see an immense, time-sensitive opportunity for the ecological 
community to engage with other disciplines, to integrate data across 
spatiotemporal scales and operationalize a dynamic human footprint. 
Human-mobility data providers can make invaluable contributions to 
these efforts by improving data accessibility, data standardization and 
transparency. The insights gained by incorporating a dynamic human 
footprint into ecological studies could provide decision-makers with 
critical novel information for designing highly effective, targeted con-
servation interventions. Coordination and collaboration are imperative 
for understanding and managing human–wildlife interactions in the 
Anthropocene104. We must tackle this challenge with utmost urgency 
to protect the animals that are forced to share space with us.
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