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• Effects of PFAS on maternal hormone
deposition were studied in Svalbard kitti-
wakes.

• Some hormones present in the egg yolk
were compared to female plasma PFAS
levels.

• Yolk hormone levels were not related to
female hormone levels.

• Yolk thyroid and glucocorticoid levels
were unrelated to females PFAS contami-
nation.

• Yolk testosterone levels were positively
related to some maternal long-chain
PFCAs.
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Maternal effects are thought to be essential tools for females to modulate offspring development. The selective depo-
sition of avianmaternal hormones could therefore allow females to strategically adjust the phenotype of their offspring
to the environmental situation encountered. However, at the time of egg formation, several contaminants are also
transferred to the egg, including per- and polyfluoroalkyl substances (PFAS) which are ubiquitous organic contami-
nants with endocrine disrupting properties. It is, however, unknown if they can disrupt maternal hormone deposition.
In this study we explored relationships between female PFAS burden and maternal deposition in the eggs of steroids
(dihydrotestosterone, androstenedione and testosterone), glucocorticoids (corticosterone) and thyroid hormones
(triiodothyronine and thyroxine) in a population of the Arctic-breeding black-legged kittiwake (Rissa tridactyla). Egg
yolk hormone levels were unrelated to female hormone plasma levels. Second-laid eggs had significantly lower
concentrations of androstenedione than first-laid eggs. Triiodothyronine yolk levels were decreasing with increasing
egg mass but increasing with increasing females' body condition. Testosterone was the only transferred yolk hormone
correlated to maternal PFAS burden: specifically, we found a positive correlation between testosterone in yolks and
circulating maternal perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDcA) and perfluoroundecanoic acid
(PFUnA) in first-laid eggs. This correlative study provides a first insight into the potential of some long-chain
perfluoroalkyl acids to disrupt maternal hormones deposition in eggs and raises the question about the consequences
of increased testosterone deposition on the developing embryo.
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1. Introduction

Freshly laid avian eggs contain, in addition to basic resources, substantial
levels of maternal hormones (Groothuis et al., 2005; Schwabl, 1993). The
amount of maternal hormones deposited in the egg yolk is known to be influ-
enced by environmental factors (e.g., abiotic conditions (Lessells et al., 2016),
food availability (Verboven et al., 2003) and social interactions (Pilz and
Smith, 2004)), the offspring characteristics (e.g., sex of the embryo (Müller
et al., 2002), laying date (Tomita et al., 2011), position of the egg in the laying
order (Schwabl, 1993), composition of the egg (Groothuis et al., 2006)) and
the state of themother bird (Tschirren et al., 2009; e.g., her age, physical con-
dition, past experience, genetic background) or the male quality (Rutkowska
et al., 2020). Although mainly explored for steroids, experimental prenatal
exposure to maternal hormones in ovo have shown to impact hatching date
and offspring growth (von Engelhardt et al., 2006), metabolism (Tobler
et al., 2007), immune system (Navara et al., 2005), sex-ratio (Rubolini
et al., 2006), behavior (Possenti et al., 2018) and survival (Saino et al.,
2005). Maternal hormones, in interaction with the offspring and maternal
genotype, are believed to behave as messengers enabling adaptive maternal
effects to prepare the offspring to prevailing environmental conditions
(Mousseau and Fox, 1998; von Engelhardt and Groothuis, 2011). Indepen-
dent regulation between circulating and transferred maternal hormones is
an essential prerequisite for hormones to be adaptive regulators of offspring
development. Although very little is known about transfer mechanisms, the
literature suggests that such a separate control over deposition and response
may at least be possible (Della Costa et al., 2020; Groothuis and Schwabl,
2008; Kumar et al., 2019; Okuliarova et al., 2018). Being the results of a co-
evolutionary process between maternal transfer and offspring responses to
these substances, such intergenerational effects may either have beneficial
or even detrimental outcomes for the mother and/or the offspring
(Hsu et al., 2020a; Marshall and Uller, 2007). Indeed, maternal effects may
increase offspring fitness, but also reduce it to increase maternal survival in
unprofitable conditions. Maternal hormones and the offspring's response
should therefore match an optimal trade-off for a given situation.

In this context, any disruption to the transfer of maternal hormonesmay
be detrimental not only to the offspring but also to the siblings and the
parents (Bebbington and Groothuis, 2021; Groothuis et al., 2019). In
birds, endocrine pathways are known to be affected by various environ-
mental contaminants (e.g., trace elements, organic compounds; Metcalfe
et al., 2022; Tan et al., 2009; Tyler et al., 1998). These contaminants are
transferred to the yolk (Ackerman et al., 2017; Verreault et al., 2006) and
may therefore potentially disruptmaternal hormone deposition. The effects
of contaminants on maternal hormone deposition has nonetheless been
seldom investigated: legacy persistent organic pollutants (POPs: organo-
chlorines, brominated flame retardants) altered maternal steroids deposi-
tion in eggs of glaucous gulls (Larus hyperboreus; Verboven et al., 2008),
but not in common terns (Sterna hirundo; French et al., 2001) and great
tits (Parus major; Ruuskanen et al., 2019).

There is a clear need for further investigations on the effects of contam-
inants on the transfer of maternal hormones in eggs. Especially since most
of the work has focussed on steroids, and not on other deposited hormones
(e.g., glucocorticoids and thyroid hormones; von Engelhardt andGroothuis,
2011). More specifically, seabirds are exposed to a large variety of deleteri-
ous substances (Bianchini et al., 2022), but some of them receive little
attention. Among them are per- and polyfluoroalkyl substances (PFAS), a
family of synthetic compounds used as surface-active agents in a multitude
of manufactured products: firefighting foams, waterproof clothing, non-
stick cookware, coatings, food packaging (Buck et al., 2011). Despite the
known PFAS endocrine disrupting capabilities (Chen et al., 2019;
Coperchini et al., 2020; Di Nisio et al., 2020; Di Nisio et al., 2019; Jensen
and Leffers, 2008; Rickard et al., 2022; Shi et al., 2019), to date our knowl-
edge on that matter remains extremely limited in wildlife. Indeed, a few
correlative studies on birds suggests that PFAS may affect concentrations
of thyroid hormones, corticosterone and prolactin, potentially leading to
effects on physiology, parental investment and incubation behaviors
(Ask et al., 2021; Blévin et al., 2020; Mortensen et al., 2020; Nøst et al.,
2

2012; Sebastiano et al., 2020b; Tartu et al., 2014). The disrupting mecha-
nisms are not well identified, but like other endocrine-disrupting com-
pounds, PFAS may cause an alteration of the synthesis and breakdown, the
release, transport and binding or elimination of endogenous hormones
(Metcalfe et al., 2022). Specifically, some studies have shown that some
PFAS are, for example, particularly prone to bind to hormone transport pro-
teins (Jones et al., 2003; Kar et al., 2017; Mortensen et al., 2020). Previous
investigations have shown that PFAS may exhibit a dissimilar relationship
with circulating hormones than the more widely studied chlorinated POPs
(Melnes et al., 2017; Tartu et al., 2014), which urge for additional studies re-
garding PFAS endocrine disrupting activities. PFAS can be transferred to the
yolk (Bertolero et al., 2015; Gebbink and Letcher, 2012; Jouanneau et al.,
2022), but their impact on maternal hormone deposition have not been in-
vestigated yet. Nonetheless, any disruption of the formation ofmaternal hor-
mones or competitive binding by PFAS to transport proteins may lead to the
deterioration of maternal hormones transfer and consequently to the trans-
mission of maladaptive information to the offspring.

In this context, the aim of the present study is to investigate maternal
hormone deposition in eggs of the Arctic-breeding black-legged kittiwake
(Rissa tridactyla; hereafter “kittiwake”), known to be dietary exposed to
PFAS in the wild (Blévin et al., 2017a; Jouanneau et al., 2022; Tartu
et al., 2014). Specifically, we studied the relationship between female
PFAS burden, and yolk maternal glucocorticoids (corticosterone), steroids
(testosterone, dihydrotestosterone and androstenedione), and thyroid hor-
mones (triiodothyronine and thyroxine), all known to be transferred to the
eggs and to play a key role in embryo development (Groothuis et al., 2005;
Groothuis and Schwabl, 2002, 2008; Ruuskanen et al., 2016; Sarraude
et al., 2020a; Sarraude et al., 2020c). By sampling females during the pre-
laying stage (i.e., during egg formation), and their eggs as soon as they
were laid, we provide valuable insights into the relationship between ma-
ternal circulating and maternally deposited hormones, and shed light on
the potential impacts of maternal PFAS on maternal transfer. Given the es-
tablished endocrine disrupting properties of PFAS, we hypothesized a pos-
sible alteration of the maternal hormone's deposition, via a disrupted
transfer of some hormones in eggs in the most PFAS-contaminated females.

2. Methods

2.1. Study area and sample collection

We carried out the field study between May and June 2019 in a kitti-
wake colony in Kongsfjorden, Svalbard (see Jouanneau et al., 2022 for fur-
ther information on the field operations). Briefly, adults from 14 nests were
captured using a noose at the end of a fishing rod, during the pre-laying pe-
riod (i.e., at the time of egg formation), and immediately sampled for 2 mL
of blood from the alar vein. Skull length (head + bill) was measured with
an accuracy of 0.1 mm using a calliper and birds were weighted to the
nearest 2 g with a Pesola spring balance. The sex of individuals were iden-
tified by molecular sexing from red blood cells following Fridolfsson and
Ellegren (1999) and only females (n = 14) were kept for further analyses.
At the end of each day, we separated plasma and red blood cells via centri-
fugation and kept both samples frozen (−20 °C) until analyses. In this spe-
cies, females usually lay a two-egg clutch (Moe et al., 2009). We monitored
those nests daily and collectedfirst- (n=14) and second-laid eggs (n=11)
<24 h after laying. Hormonesmeasured in freshly laid eggs, as we did in the
present study, are entirely synthesized by the female before being trans-
ferred to the eggs (von Engelhardt and Groothuis, 2011). We weighted
the eggs in the laboratory to the nearest 0.01 g, then separated yolk and
albumen into microtubes and kept both samples frozen until analyses.
Field operations were approved by the Governor of Svalbard and by the
Norwegian Animal Research Authority (NARA, permit number 19970).

2.2. Per- and polyfluoroalkyl substances analysis

We adapted a method from Powley et al. (2005), contaminants analysis
method and concentrations have been extensively described in a previous
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study on PFASmaternal transfer (Jouanneau et al., 2022). Only compounds
detected in >70 % of the females were kept for further investigations
(see supporting information (SI), Table S1 for a list of all measured
compounds and detection percentages). Consequently, only the following
compounds were kept for statistical analyses: perfluorohexanesulfonic
acid (PFHxS), branched perfluorooctanesulfonic acid (brPFOS), linear
perfluorooctanesulfonic acid (linPFOS), perfluorooctanoic acid (PFOA),
perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDcA),
perfluoroundecanoic acid (PFUnA), perfluorododecanoic acid (PFDoA),
perfluorotridecanoic acid (PFTriA) and perfluorotetradecanoic acid
(PFTeA). For all included PFAS, values lower than the limit of detection
(LOD) were set to half of the LOD of the specific compound. We provided
all concentrations in ng g−1 wet weight (ww).

2.3. Hormone analyses

We measured the following steroid and thyroid hormones in female
plasma and egg yolk: dihydrotestosterone (DHT), androstenedione
(AND), testosterone (T), corticosterone (CORT), triiodothyronine (T3) and
thyroxine (T4). Extraction of the plasma and yolk samples is detailed for
all hormones in the SI.

2.3.1. Steroid hormones (DHT, AND, T and CORT)
The four hormones were assayed with similar procedures: Radio-

immunoassay (RIA) or Enzyme Linked ImmunoSorbent Assay (ELISA)
methods. CORT and T were measured with RIA method, 100 μL of extract
were incubated overnight at 4 °C with 4000 cpm of the appropriate H3-
steroid (Perkin Elmer, US) and polyclonal antiserum (Ab). Anti-
testosterone Ab was provided by Dr. Picaper (Nuclear medicine, CHU La
Source, Orléans, France). The two anti-corticosterone Ab (one for plasma
and one for yolk) were supplied by Merck, Sigma Aldrich, France. The
bound fraction was then separated from the free fraction by addition of
dextran-coated charcoal and the activity was counted on a Tri-Carb
2810TR scintillation counter (Perkin Elmer, US). AND and DHT were
assayed with commercial ELISA kits supplied by IBL International (AND
and DHT in yolk, ref. DB 52161 and DB 52021, respectively), Abnova
(AND in plasma, ref. KA 1898) and Demeditec (DHT in plasma, ref.
DE 2330).

2.3.2. Thyroid hormones (T3 and T4)
Total T3 and T4 were measured with RIA method, 25 μL of yolk extract

or plasma were incubated overnight at 4 °C with 10,000 cpm of the appro-
priate I125-steroid (Perkin Elmer, US) and polyclonal rabbit antiserum
(Sigma Aldrich, France). The bound fraction was then separated from free
fraction by addition of a polyclonal sheep antiserum against rabbit antise-
rum and the activity was counted on a Gamma Wizard 2470 counter
(Perkin Elmer, US). We also calculated the T3/T4 ratio, often used when
investigating thyroid hormones.

2.3.3. Quality control
We previously validated RIA and ELISA hormones assays on the kitti-

wake plasma and yolk. We diluted all extracts in the appropriate assay
buffer, their displacement regression lines were all parallel to the standard
ones. To guarantee the quality and control for reproducibility and precision
of the RIA, hormone standards, blanks, total activity and non-specific activ-
ity were concurrently analysed. We ran all samples in duplicate in one or
two runs. Additional information on the hormone analyses quality control
can be found in SI, minimal detectable and intra-assay variation for plasma
and yolk can be found in SI, Table S2. Samples below the LOD (n=6)were
replaced with a value equal to half of the LOD of the specific hormone. We
provided all plasma concentrations in ng mL−1, and yolk concentrations in
ng g−1 ww. Bleeding time was kept as short as possible (mean ± SD:
02 min 09 s ± 36 s) and was not related to baseline CORT levels in plasma
(linear model: F1, 12 = 0.15, p = 0.70).
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2.4. Statistical analyses

2.4.1. Preliminary analyses
All statistical analyses were performed using R (v. 4.0.0; R Core Team,

2020). We tested the normality of residuals and visually inspected diagnos-
tic plots for each models, to check whether the data met the linear model
assumptions (Zuur et al., 2009). First, we investigated the relationship
between each hormone or PFAS in females' plasma and the sampling date
using linear models (LMs). If the relationship was significant (p < 0.05)
we used the residuals of the LM instead of the specific hormone or PFAS
in the following analyses. This enabled us to obtain comparable individuals
by minimizing the variance due to the sampling time. T3 and PFTeA were
significantly decreasing with time in females (LM: F1, 12 = 7.06, p =
0.02 and F1, 12 = 6.56, p = 0.03 respectively) and residuals of the LM
were consequently used in subsequent analyses.

2.4.2. Factors influencing the maternal transfer of hormones
We used linear mixed-effect models (LMMs, package “nlme”; Pinheiro

et al., 2017) to investigate the effect of female and egg characteristics on
the concentrations of each transferred hormone independently (i.e., one
model per hormone). The full models included the maternal circulating
concentration for the specific hormone, the female's scaled mass index (a
proxy of the body condition of the female calculated following Peig and
Green (2009)), the egg mass (used as a proxy of egg quality), the rank of
the egg in the clutch by laying order (egg rank: 1 or 2) and the laying
date of the first-laid eggs as fixed factors (see models formula in the SI).
For all full LMMs, we built a set of models ranging from the full to the
null model with all possible combination of predictors and we selected
the best model according to the Akaik̈e's Information Criterion for small
sample size (AICc; i.e., the most parsimonious one among those with a
ΔAICc < 2; package “AICcmodavg”; Mazerolle, 2017). In all LMMs, the
nest ID was used as a random variable to account for the relation between
both eggs of a clutch and therefore avoid pseudo-replication.

2.4.3. Relationship between PFAS concentration in females and the maternal
hormones in their eggs

We assessed the effect of each maternal circulating PFAS on the transfer
of each maternal hormone in eggs using LMs. As females were sampled
before they laid their first egg, and since females may excrete a significant
amount of PFAS during the laying process, we only included first-laid eggs
in these analyses to avoid biased results. We built one model per hormone.
For each PFAS independently, the full model included the specific PFAS
as fixed factor as well as any variables identified as having a significant
impact on the specific maternal hormone concentrations in the yolk in
Section 2.4.2 (except “egg rank” since only first-laid eggs were used here;
see models formula in the SI). AICc selection was also performed on the
full models, although only two models were compared: the full model
and the full model without the PFAS variable.

3. Results

We provide the descriptive statistics for hormone concentration in
females' plasma and egg yolk as well as PFAS concentrations in females'
plasma in Tables 1 & 2.

3.1. Factors influencing the maternal transfer of hormones

Egg yolk hormone levels were unrelated to female hormone plasma
levels (SI Table S3). First-laid eggs had significantly lower AND concentra-
tions than second-laid eggs (SI Table S3 & Table S4; mean of first- and
second-laid eggs respectively: 855 and 1030 ng g−1; confidence interval
(CI) of the difference: [93.1 – 218]). We also found decreasing T3 and T3/
T4 ratio with egg mass (CI of the slope: [−0.021 – −0.001] and [−0.282
– –0.079] respectively; SI Table S4 & Fig. 1), but increasing T3 and T3/T4
ratio with female's scaled mass index (CI of the slope: [0.000 – 0.002]
and [0.001 – 0.019] respectively; SI Table S4 & Fig. 1). No other



Table 2
Descriptive statistics (mean ± standard deviation SD, median and range min-max)
for selected PFAS concentrations (ng g−1 ww) in plasma of female black-legged
kittiwakes from Svalbard (see SI Table S1 for details on the compound selection).
In bold, the compounds associated with maternal T in eggs yolk.

Mean ± SD Median Min-max

PFHxS 0.23 ± 0.09 0.21 0.11 ‐ 0.40
brPFOS 0.75 ± 0.49 0.86 0.03 ‐ 1.38
linPFOS 10.8 ± 4.70 11.3 3.14 ‐ 17.42
PFOA 0.17 ± 0.13 0.14 0.04 ‐ 0.57
PFNA 1.06 ± 0.61 1.07 0.19 ‐ 2.44
PFDcA 1.71 ± 1.56 1.56 0.40 ‐ 3.26
PFUnA 6.88 ± 3.22 7.42 1.40 ‐ 12.4
PFDoA 1.78 ± 0.98 1.78 0.02 ‐ 3.76
PFTriA 7.80 ± 3.35 7.93 1.81 ‐ 13.9
PFTeA 1.44 ± 0.60 1.53 0.471 ‐ 2.63

Fig. 1. Yolk maternal hormone concentrations relationship with total egg mass, in eg
triiodothyronine/thyroxine (T3/T4). The solid line refers to a statistically significant rela

Table 1
Descriptive statistics (mean ± standard deviation SD, median and range min-max)
for hormone concentrations in plasma (ng mL−1) and yolk (ng g−1 ww) of black-
legged kittiwakes from Svalbard, samples measured below the limit of detection
(LOD) included as half of the specific LOD. Dihydrotestosterone (DHT), androstene-
dione (AND), corticosterone (CORT), testosterone (T), triiodothyronine (T3),
thyroxine (T4) and the ratio between T3 and T4 (T3 / T4).

Pre-laying females Eggs yolk

Mean ± SD Median Min-max Mean ± SD Median Min-max

DHT 83.5 ± 47.1 78.8 <LOD ‐ 200 2649 ± 856 2603 1419 ‐ 4317
AND 0.21 ± 0.17 0.16 <LOD ‐ 0.53 932 ± 219 920 573 ‐ 1523
T 0.52 ± 0.43 0.33 <LOD ‐ 1.46 16.2 ± 4.72 15.9 9.59 ‐ 28.8
CORT 11.2 ± 7.68 7.66 4.43 ‐ 29.0 5.37 ± 1.34 5.15 3.16 ‐ 8.42
T3 1.04 ± 0.58 1.17 0.17 ‐ 1.87 0.39 ± 0.10 0.36 0.23 ‐ 0.63
T4 47.6 ± 13.8 45.1 26.8 ‐ 78.7 10.8 ± 2.04 10.4 7.59 ‐ 15.5
T3/T4 2.21 ± 1.33 2.14 0.48 ‐ 4.85 3.78 ± 1.15 3.47 2.16 ‐ 5.93
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investigated egg or female characteristics affected maternal hormones
deposition (SI Table S4).

3.2. Female PFAS contamination and maternal hormone deposition

Yolk concentration of CORT, AND, DHT, T3 and T4, as well as T3/T4

ratios were not related to maternal PFAS burden in first-laid eggs (SI
Table S5). The model selection showed that T was the only maternally
transferred hormone related to certain female PFAS, PFNA, PFDcA and
PFUnA (SI Table S5). Specifically, we found increasing T in eggs with
increasing plasma circulating maternal concentrations of these three
compounds with comparable strength even with different range of concen-
tration found (PFNA: F1, 12 = 5.88; p = 0.032; CI of the slope: [0.41 –
7.75], PFDcA: F1, 12 = 5.87; p = 0.032; CI of the slope: [0.28 – 5.27],
and PFUnA: F1, 12 = 6.27; p = 0.028; CI of the slope: [0.10 – 1.47]; SI
Table S6 and Fig. 2).

4. Discussion

We investigated maternally deposited concentrations of androgens,
glucocorticoids and thyroid hormones in egg yolk of black-legged kittiwake
in relation with the female's and eggs characteristics, and the potential
disrupting effect of PFAS on maternal hormone deposition. We found that
egg yolk hormone levels were unrelated to female hormone plasma levels
at the time of sampling, but that laying order, egg mass and the female's
scaled mass index appeared to influence yolk concentration of some of
the studied hormones. We observed an increased maternal T deposition
in the first-laid egg in females bearing high levels of PFNA, PFDcA or
PFUnA.

4.1. Factors influencing the maternal transfer of hormones

Differential deposition of androgens along the laying sequence – as
observed for AND in the present study – has been described as a mean to
influence the outcome of sibling rivalry in various avian species imple-
menting brood reduction, ultimately maximising females' reproductive
gs of black-legged kittiwake from Svalbard for triiodothyronine (T3) and the ratio
tionship (see SI Table S4), with dotted lines representing 95 % confidence intervals.
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outputs (Eising et al., 2001; Muriel et al., 2019; Poisbleau et al., 2011).
Studies on black-legged kittiwakes have reported higher T and AND in
second-laid eggs, the amount deposited likely being determined by a com-
plex trade-off between offspring and mother fitness and the outcomes of
such a differential deposition largely depends on females and environmen-
tal conditions (Benowitz-Fredericks et al., 2013; Gasparini et al., 2007;
Müller et al., 2012; Vallarino et al., 2011). Higher androgen concentrations
enhance embryo growth and therefore reduce the detrimental effect of
hatching asynchrony for the junior egg, however, at the expense of poten-
tial long-term costs for the offspring (Groothuis et al., 2005). Interestingly,
contrary to AND, we did not observe any difference in the deposition of T,
DHT or CORT in first- and second-laid eggs in the present study, despite the
fact that they are all products of the same metabolic pathway.

Recent studies showed that maternal deposited thyroid hormones were
associated with environmental factors including food availability and tem-
perature experienced during the pre-laying stage (Hsu et al., 2022;
Ruuskanen and Hsu, 2018). Their effects are still unclear but seem to
occur mainly during the embryological development period and largely
act on offspring growth and positively impact hatching success and telo-
mere length during early postnatal period (Hsu et al., 2019; Ruuskanen
et al., 2016; Sarraude et al., 2020a; Sarraude et al., 2020b; Sarraude
et al., 2020c; Stier et al., 2020). The increasing concentration of maternal
T3 (but not T4) deposited with increasing females scaled mass index
found in the present study may illustrate that females in good condition
can invest more in their offspring than those in lower condition. However,
heavier eggs –which have been identified inmany species as eggs of higher
quality, leading to a higher survival probability of the offspring (Williams,
1994) – received lower T3 concentrations (but not T4) than lighter eggs,
although we investigated concentrations and not total deposited amount
in eggs. Data on yolk thyroid hormones are very limited for birds at the
moment and the factors driving thyroid hormone deposition in eggs are
still unclear and need further clarifications (Hsu et al., 2020b).

Other factors including adult features (e.g., age, past experience, pheno-
type and genetic (Tschirren et al., 2009; von Engelhardt and Groothuis,
2011)), and the environment experienced before or during egg laying by
females (e.g., food quality and availability (Gasparini et al., 2007;
Verboven et al., 2003) or social interactions (Bentz et al., 2016)) were
also proven important predictors of maternal hormones deposition in
eggs. These datawere not available in the present study andwould be inter-
esting to include in further integrative studies. That being said, breeding
occurred extremely late in 2019 (laying date median in the whole colony
in 2019: 25th of June, 10 days later than usual average median laying
date for the same population; Keogan et al., 2022). It is likely that
this late breeding was a consequence of delayed food supply which may
have affected hormone levels (e.g., corticosterone; Goutte et al., 2014,
Riechert et al., 2014). The maternal hormones deposition may thus have
been largely impacted by these particular conditions. Therefore, we do
recommend additional investigations in various environmental conditions,
as well as experimental studies, to better identify the drivers of maternal
hormone deposition in eggs.

4.2. Female PFAS contamination and maternal hormone deposition

Very few studies explored the relationship between endocrine-
disrupting chemicals (EDCs) and maternal transferred hormones in avian
or non-avian oviparous species, and to the best of our knowledge, only
two studies found a correlation (Hamlin et al., 2010; Verboven et al.,
2008), when others could not demonstrate any clear tendency (French
et al., 2001; Johnston et al., 2005; Ruuskanen et al., 2019). Several emerg-
ing and legacy PFAS are suspected or identified EDCs (Coperchini et al.,
2020; Johnson et al., 2021), and recent studies on seabirds and raptors
have reported association between glucocorticoids, thyroid hormones and
some long-chain perfluoroalkyl acids (Ask et al., 2021; Choy et al., 2022;
Melnes et al., 2017; Sebastiano et al., 2020a; Sun et al., 2021; Tartu et al.,
2014). Regarding maternal hormones transfer to the eggs, our study
shows that PFNA (C9), PFDcA (C10) and PFUnA (C11) concentrations in
5

females are positively correlated with maternal T concentration in eggs.
No significant correlations could be found for the perfluoroalkyl carboxylic
acids (PFCAs)with longer carbon chains (C12 –C14), even though theywere
present at comparable concentrations. Long-chain PFCAs (≥C8) have very
similar physico-chemical characteristics (Thackray et al., 2020), we could
therefore expect a similar mode of action for them, and so, an additive
effect when adding up the concentrations. However, no correlation was
found between the sum of long-chain PFCAs (C8 – C14) and T (LM:
F1, 12 = 3.24; p = 0.097; CI of the slope: [−0.05 – 0.50]). There was
also no significant relationship between maternal T deposited in eggs and
females PFOS (brPFOS or linPFOS) although it is the predominant com-
pound in females' plasma (Table 2). Perfluoroalkyl sulfonic acids (PFSAs)
including PFHxS and PFOS have different physicochemical properties
than PFCAs. Despite high PFOS concentrations and that this compound
was previously found to downregulate the production of T in humans and
rats (Tarapore andOuyang, 2021), PFOSmay be less prone to affect T trans-
fer than long-chain PFCAs. Although we cannot exclude that the observed
relationships for C9 – C11 PFCAs may have been induced by unidentified,
correlated factors, our results suggest that at least some long-chain PFCAs
may cause a disruption of the maternal hormones concentrations in eggs.

A hypothesis behind this relationship may include disturbance of T
biosynthesis or breakdown mechanisms by PFAS. Among hormones, if
androgens are mainly formed in the theca interna cells of the follicles
wall, thyroid hormones and corticosterone are synthesized by distant
glands (thyroid and adrenal glands, respectively) of the mother bird
(Groothuis and Schwabl, 2008). All hormones are then transferred to the
oocyte via blood, although the mechanisms are still largely unexplored
(von Engelhardt and Groothuis, 2011). For instance, a disrupting effect of
PFAS on the steroidogenesis may happen as steroids are produced from
cholesterol, whose concentration in blood is known to be affected by
PFAS in vertebrates (Geiger et al., 2014; Geng et al., 2019; Jacobsen
et al., 2018; Lin et al., 2019; Roth et al., 2021). However, we would expect
a similar disruption in females' plasma, which was not the case (LM for
PFNA: F1, 12 = 1.79; p = 0.206; CI of the slope: [−0.67 – 0.16], PFDcA:
F1, 12 = 1.17; p = 0.30; CI of the slope: [−0.43 – 0.15], and PFUnA:
F1, 12 = 0.73; p = 0.41; CI of the slope: [−0.11 – 0.05]). A disruption of
the steroidogenesis may also happen at the enzymatic level. AND is metab-
olized to T by the 17β-hydroxysteroid dehydrogenase (17β-HSD) which is
known to be inhibited by PFAS in humans and rats (Zhu et al., 2020).
However, this reduced the production of T and thus cannot explain the
higher levels of T observed in eggs of females with higher PFAS concentra-
tion. Another hypothesis could involve gonadotrophic hormones such as
luteinizing hormone (LH). PFAS are known to affect LH in humans
(Raymer et al., 2012), but this hormone was found essential to control T
deposition in Japanese quails (Coturnix japonica; Okuliarova et al., 2018).
We did not measure LH in females and thus cannot explore this assumption,
but this may be a valuable lead to explore in further studies.

Maternal hormone transfer mechanisms may also be affected. Unlike
other vertebrates, birds do not produce any transport protein with high
affinity to steroids as the sex hormone-binding globulin (Wingfield et al.,
1984). Instead, the corticosteroid-binding globulin which has a high affin-
ity for CORT, may also transport androgens (Lin et al., 2021; Vashchenko
et al., 2016). Lipoproteins and albumin may bind to all steroids as well,
with a low affinity (Malisch and Breuner, 2010; Mcnabb and Morgan,
1997). PFAS in blood are bound to albumin, fatty-acid binding proteins
and organic anion transporters (Ng and Hungerbuhler, 2014). Therefore,
a competition for blood transporters, including albumin, between PFAS
and maternal T during the process of maternal transfer to egg should result
in a negative relationship between PFAS in females and deposited T in eggs,
but we observe an opposite trend. Also, a displacement of hormones fixed
to albumin by PFAS has previously been described as unlikely at environ-
mental concentrations (Jones et al., 2003). An alternative explanation can
be offered on the basis of the molecular structure of the observed PFCAs.
In kittiwakes, PFAS are linearly positively correlated between females
and their eggs for most compounds, with the transfer efficiency depending
on their physico-chemical characteristics caused by the increasing



Fig. 2.Relationships betweenmaternal testosterone concentration in first-laid eggs yolk and circulating PFAS in plasma of black-legged kittiwake females from Svalbard. The
solid line refers to a statistically significant relationship (see SI Table S6), with dotted lines representing 95 % confidence intervals and no line representing no significant
relationship. PFTeA in females was detrended by female sampling date (see Statistical analyses section).
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perfluorinated carbon chain length (Jouanneau et al., 2022). Therefore, we
can predict that the disrupting activity of PFAS in general and PFCAs with
medium long chain length (C9–C11) on T will vary according to the PFAS
carbon chain length. In our study, the sample size was relatively low,
which may limit the relationship between T and some of the PFAS. Further
studies with a larger sample size would be essential to investigate the afore-
mentioned hypotheses.

Overall, our study provides further evidence that certain long-chain
PFCAs are the most associated with effects in this kittiwakes' population
(Blévin et al., 2017a; Blévin et al., 2020; Blévin et al., 2017b; Costantini
et al., 2019; Tartu et al., 2014), and that it is essential to investigate how
single compounds affect physiological markers, in addition to how they
act together (Sebastiano et al., 2020a). However, correlative studies in
wild populations need to be interpreted with caution as the observed rela-
tionship betweenC9 to C11 PFCAs and Tmay be the consequence of alterna-
tive and unknown correlated contextual cues. Maternal yolk hormone
concentrations are related to egg quality in some species, therefore in this
wild population, females feeding on higher trophic level could accumulate
more PFAS and invest more in reproduction by laying eggs with higher T
concentrations.

A large body of literature describes the consequences of high T concen-
trations in eggs. In semi-precocial seabirds, elevated yolk T was related to
various development factors on offspring of seabirds from the same family
(impaired sex-ratio (Rubolini et al., 2006), growth and body mass (Eising
et al., 2001; Parolini et al., 2017; Rubolini et al., 2006), increased begging
(Boncoraglio et al., 2006), competitiveness (Müller et al., 2009) and sur-
vival (Eising and Groothuis, 2003), decreased hatching time (Eising et al.,
2001), immune response (Muller et al., 2005) and telomere length
(Parolini et al., 2019)). In kittiwakes more specifically, experimentally
elevated T in eggs led to an increased aggressiveness and dominance in
the clutch (Müller et al., 2013; Müller et al., 2012). Most of the studies
cited above investigate the effects of experimentally elevated T, which
often exceed T concentrations observed in wild populations. Embryos in
natura may buffer maternal T through inactivation pathways, which could
at least reduce the impact of an elevated deposition of maternal T
(Campbell et al., 2020). A disruption of maternal deposited T may impact
the embryo at different levels, inducing a mismatch between the environ-
ment experienced early and later in life by the offspring and its phenotype,
which may ultimately affect its survival and fitness. Moreover, in kitti-
wakes, the most PFAS contaminated females laid the most contaminated
eggs (Jouanneau et al., 2022), therefore the disrupted deposition of mater-
nal T and the high concentrations of PFAS in females and eggs may have
additive consequences on the embryo (known to be particularly sensitive
to EDCs; Hamlin and Guillette, 2011) through disruptions of the maternal
adaptive effect, of embryo development and of the female's behavior during
incubation and chick-rearing periods.

In the present study, we found no effect of PFAS on CORT and thyroid
hormones (THs) deposition in eggs, despite these contaminants being
known to negatively correlate with circulating CORT, and positively corre-
late with circulating THs in seabirds including kittiwakes and some birds of
prey (Ask et al., 2021; Choy et al., 2022; Sebastiano et al., 2020b; Sun et al.,
2021; Tartu et al., 2014). CORT is known to be affected by food availability
(Goutte et al., 2014; Riechert et al., 2014). It is likely that the late breeding
in 2019was a consequence of delayed food supplywhichmay have affected
CORT levels. This may have, in turn, affected the maternal deposition of
CORT in the yolk and possibly affected the relationship between PFAS
and CORTdeposition. Investigating of this relationship in different environ-
mental contexts (“good” and “poor” conditions), may help in concluding on
how PFAS may affect the maternal transfer of CORT. Concerning THs dis-
ruption by PFAS, mechanisms affected were explored in humans and
birds andmay include interaction with THs receptors and binding proteins,
with the thyroid peroxidase enzyme activity or with thyroid-stimulating
hormone (Fenton et al., 2021; Kar et al., 2017; Mortensen et al., 2020). In
birds, maternal THs were found to impact several parameters in embryo-
genesis development and in post-hatch performance and fitness (Darras,
2019; Hsu et al., 2019; Sarraude et al., 2020a; Sarraude et al., 2020c;
7

Stier et al., 2020). Therefore, the impact of PFAS may be limited on these
endpoints during kittiwake embryo development, at least at the concentra-
tions we measured in the present study.

5. Conclusion

This study identified some of the main factors driving the deposition of
several major maternal hormones in eggs of the black-legged kittiwake. It
also produced a first insight into the relationship between females PFAS
burden in plasma and maternal transferred hormones in egg yolk. None
of the investigated thyroid (T3 and T4) and glucocorticoid (CORT)
hormones deposition seemed to be affected by female contamination.
Similar results were observed for steroid hormones including AND and
DHT, but we observed a positive relationship between some long-chain
PFAS and T deposited in eggs. Although our results do not provide evidence
for a causal relationship between PFAS contamination in females and
maternal T in eggs, we suggested that the transfer mechanism may be
similar for some PFAS and T, which may eventually affect maternal adap-
tive effects driven by T deposition.

Nonetheless, maternal hormones deposition depends on a complex
combination of various intrinsic and extrinsic factors, including environ-
mental conditions. The specific context in 2019, leading to a very late
breeding may thus have affected maternal hormones transfer in a specific
manner. We strongly recommend additional investigations among species
and time, as well as experimental studies to draw strong conclusions on
the main effects of PFAS on hormone deposition in avian eggs.
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