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We found that the first embryo moved anteriorwards (≤ 19% 
of maternal body length) into areas occupied by viscera be-
fore pregnancy. This shift was closely related to the number of 
developing embryos and their additive volume increase. Each 
embryonic package conformed to local space constraints within 

the maternal abdomen (e.g. more slender in thinner parts of the 
maternal body). Also, female vipers stretched their spine in a way 
that increased the effective length of the trunk region, thereby 
increasing the space available for the developing offspring. No 
changes were observed in tail length, supporting the hypothesis 

Figure 2. A, relationship between maternal snout–vent length (SVL; in centimeters) and the position of the anterior egg (in centimetres) in 
early pregnancy (pink circles) and late pregnancy (light blue triangles). The line represents the fitted linear regression and the shaded areas 
the 95% confidence interval. B, the influence of litter size (number of neonates) on absolute abdominal displacement (in centimeters), which 
represents the shift in position of the anteriormost egg within the mother’s body. Litter size was adjusted for maternal SVL (residuals). The line 
represents the fitted linear regression and the grey area the 95% confidence interval.
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that spinal flexibility was related to abdominal burden and not a 
measurement artefact (Luiselli 2005).

Similar flexibility might be common in other types of animals, 
but taxa presumably differ in the degree to which modifications 
of maternal morphology can accommodate a large volume of 

reproductive material within the abdomen. Research on humans 
provides strong evidence of volumetric constraints on carrying 
the developing embryo: other internal organs are displaced by 
the fetus as pregnancy progresses, and mothers make postural 
adjustments (Whitcome et al. 2007, Biviá-Roig et al. 2019) that 

Figure 3. A, vertebral unit length (in centimeters) measured at ovulation (“Early”), at the end of pregnancy (99 ± 0.33 days; “Late”) and after 
parturition (within 24 h; “Post”). Vertebral unit measurements were estimated from a segment combining seven vertebrae and the associated 
seven intervertebral spaces. B, maternal snout–vent length (SVL; in centimeters) measured at ovulation (“Early”), at the end of pregnancy 
(“Late”) and after parturition (“Post”) .Different letters indicate significant differences between groups.
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expand thoracic volume (Bellemare et al. 2003) and modify 
lumbopelvic morphology (Whitcome et al. 2007). Invertebrates 
with flexible abdomens exhibit significant distension during 

reproduction (Wintle and Reinhardt 2008, Starck et al. 2018), 
and even the hard exoskeleton of brachiuran crabs has enough 
elasticity to accommodate the clutch (Hines 1992).

Our data on snakes captured from the field shortly before 
parturition suggest that spinal flexibility is not a consequence of 
prolonged captivity and is found in other species. Snakes are of 
particular interest because many species (including vipers) in-
gest meals that are large relative to the body size of the predator, 
causing massive distension of the body (e.g. Glaudas et al. 2019). 
As a result, snakes of all age classes and both sexes might be under 
intense selection to be able to increase space flexibly within the 
trunk, by traits such as increased numbers of scale rows (Shine 
2002) and increased elasticity of the skin in relevant regions of 
the body (Tomasheski et al. 2003). Hence, snakes might be pre-
adapted to some of the morphological changes required to in-
crease abdominal volume for a developing litter. Nonetheless, 
some ecotypes of snakes might be under selection to minimize 
bodily distension; for example, a slender body shape might 
facilitate locomotion through the trees and through under-
ground tunnels (Pizzatto et al. 2007) or within narrow crevices 
(Goodman et al. 2009). Snakes that use arboreal habitats exhibit 
low reproductive output and adaptive modifications of internal 
anatomy that reduce distension by eliminating anterior–pos-
terior overlap between ovaries on left and right sides of the body. 
In extreme cases, burrowing snakes exhibit the complete loss of 
one oviduct (Blackburn 1998). Likewise, the propulsive role of 
the hindbody in aquatic locomotion might impose strong fitness 
penalties on distension of this region, resulting in an anterior 
shift of the developing litter in aquatic snakes (Shine 1988b).

The structural changes that we found are related to embryonic 
water intake and the increase in volume (Lourdais et al., 2015). 

Figure 4. Relationship between absolute decrease in maternal snout–vent length (SVL) at parturition and relative litter mass (the ratio of litter 
mass to female postpartum body mass). The line represents the fitted linear regression and the grey area the 95% confidence interval. 

Table 2. Determinants of reproductive effort, including litter mass 
(A) and relative litter mass (B). We tested the separate and combined 
influences of body size [snout–vent length (SVL)], size-adjusted 
(residuals) abdominal displacement (ADres) and size changes 
(Delta_SVL) at parturition (SVL changes). We used stepwise 
model selection based on the corrected Akaike information criterion 
(AICc) to select the most appropriate model. K refers to the number 
of parameters and wi to the AICc weight. 

Model k AICc ΔAICc wi Log-likelihood

(A) Litter mass
SVL + Delta SVL 4 168.7 0 0.99 −79.3
SVL + ADresid 4 177.7 9.01 0.01 −83.8
SVL 3 179.72 11.03 0 −86.26
Delta_SVL 3 186.99 18.17 0 −89.83
Null 2 190.94 22.24 0 −93.18
ADresid 3 191.04 22.35 0 −91.92

(B) Relative  
litter mass

Delta_SVL 3 −21.81 0 0.74 14.51
SVL + Delta SVL 4 −19.64 2.17 0.25 14.87
ADresid 3 −12.98 8.84 0.01 10.09
SVL + ADresid 4 −10.59 11.23 0 10.35
Null 2 −8.53 13.29 0 6.55
SVL 3 −6.25 15.56 0 6.73

The selected model appears in bold.
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Offspring water demand is high during pregnancy, resulting in a 
potential conflict over this resource with the mother (Dupoué et 
al. 2015b, Dezetter et al. 2021) and also among siblings (Bonnet 
et al. 2017). Maternal morphological adjustments reported 
here provide a robust way to alleviate these potential conflicts. 
Although modifications to the vertebrae during pregnancy are 
widespread in mammals (including rats, sheep, monkeys and 
humans), many of these cases might not be similar functionally 
to the situation that we have documented in vipers. In pregnant 
mammals, the most common change is a temporary increase 
in bone density and mineralization, which might function to 
counteract removal of minerals from the maternal system by 
the developing fetus, and for milk production after birth (Hood 
2012). Neither of these reproduction-related demands apply to 
the lecithotropic vipers (Lourdais et al. 2002a), although the 
time course is broadly similar, i.e. most gains in bone density are 
lost soon after parturition (Bowman and Miller 2001). Perhaps 
the closest parallel to the viper situation involves spinal elong-
ation in naked mole-rats. Well-established queens of this eu-
social rodent have elongated bodies owing to enhanced rates 
of growth of lumbar vertebrae during early pregnancies (Henry 
et al. 2007). These changes allow females to carry large litters 
in utero, while remaining sufficiently slender to move through 
narrow burrows within the colony (Henry et al. 2007). Although 
the rodent example involves changes in vertebral shape (rather 
than simply in spacing) and is permanent rather than transitory, 
the selective advantage might be similar to that driving spinal 
elongation in pregnant snakes.

In vipers, the increase in spine length must be driven by inter-
vertebral spaces, not by ossification of vertebrae per se, because 
the increased body length reverses immediately after partur-
ition. This case is therefore unlike reports on Galapagos iguanas, 
in which the length of major bones can decrease during periods 
of prolonged food shortage (Wikelski and Thom 2000). Instead, 
the proximate mechanism in vipers might involve reversible hor-
monally induced effects on musculoskeletal structure. For ex-
ample, increased rates of secretion of relaxin during pregnancy 
mediate lumbar adjustments and confer increased joint laxity 
that facilitates birth in women (Amarasekera 2012). More gen-
erally, the space between adjacent vertebrae in humans can vary 
with a circadian rhythm, reflecting forces imposed by upright vs. 
horizontal postures by day vs. at night (Green and Scott 2017). 
Increased ligament laxity is a plausible explanation for the pat-
tern observed in vipers. Even if maternal morphology returns to 
pre-pregnant conditions soon after parturition, the physiological 
consequences of such adjustments might continue for a longer 
period, as observed in humans (Cherni et al. 2019). Thus, for 

example, (Olsson et al. 2000) reported that the decrease in run-
ning speeds associated with pregnancy in lizards is manifested 
for a least a week after the animals give birth. The maternal re-
sponses that increase available abdominal volume to hold the 
developing litter might involve multiple pathways and multiple 
parts of the body, requiring significant time to reverse.

Future research
Our study extends a previous finding of morphological changes 
(abdominal skin distension; Lourdais et al. 2017) and reduced 
water allocation per offspring (Bonnet et al. 2017) in vipers. 
These combined results provide support to all five potential 
mechanisms to allow an increased total volume of developing 
offspring (Table 1). Future work could examine how the import-
ance of these space-creating mechanisms varies across species 
and sexes. For example, we might expect that spinal elongation 
and skin elasticity would be more frequent in females if these 
traits evolved to accommodate reproductive requirements. We 
would also expect elongation but not skin distensibility in a 
species where bodily distension imposes negative fitness conse-
quences (e.g. in arboreal, fossorial and aquatic snakes). Finally, 
the degree of flexibility in body volume should be highest in 
regions of the body where such distension fulfils an important 
role. In snakes, such fitness-relevant regions would include the 
stomach in both sexes (but only in species that consume large 
prey) and the hindbody in females (but not in the extreme rear 
part of the body in aquatic snakes, nor the overall body in ar-
boreal and fossorial taxa). It would also be of great interest to 
clarify the proximate mechanisms that induce spinal elongation 
and skin distensibility; for example, do hormones associated 
with pregnancy directly affect these flexibility-conferring traits?
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