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A B S T R A C T   

While many studies have illustrated the decline of animal populations—particularly of farmland birds—the 
statistical analyses, design, and protocols used have raised some concerns and criticism. Using a 27-year dataset 
(1996–2022) based on recording the number of skylarks (Alauda arvensis) at 160 longitudinal count points, our 
study confronts two approaches commonly used to model long-term trends. The first uses a single model (based 
on a priori ecological knowledge), while the second is an a posteriori approach that relies on a multi-model 
selection among candidate models that account for probability distributions to describe the error structure. 
Here we investigate whether the statistical distribution of modelled variables and the method of including 
covariates in the model affect trend estimates. With a large amount of data and in the case of underdispersion, we 
found that the model distribution used had no impact on the estimation of the long-term trend. Moreover, adding 
confounding covariates did not change or improve the trend estimation, at least when data were obtained from a 
well-designed protocol (our case). In contrast to other studies reporting an effect of the model’s distribution on 
long-term trends, especially in the presence of overdispersion, our results offer a new perspective on the presence 
of underdispersion, where simple models perform equally well as complex ones. Further research is now needed 
on multiple species data or on smaller data sets to check the generality of our findings.   

1. Introduction 

Over the past 30 years, numerous studies have highlighted the global 
decline of animal abundance worldwide, which underpins a general 
biodiversity crisis (Chapin III et al., 2000; Vitousek et al., 1997). Such 
changes, detected through long-term monitoring, concern all taxa, 
including insects (Forister et al., 2019; Wagner, 2020), birds (Bowler 
et al., 2019; Rosenberg et al., 2019), mammals (WWF, 2022) and 
freshwater megafauna (He et al., 2019). However, detecting a trend by 
repeating noisy local abundance measurements over time can be be 
tricky; consequently, several modelling techniques have been developed 
to detect the signature of environmental changes and anthropogenic 
impacts on animal populations. Several assumptions surround these 
modelling techniques, some of which may not be respected over time, 
which is a potential issue when dealing with long-term trends. For 
instance, survey techniques or design may have changed throughout 
studies using long-term datasets, leading to missing data that are usually 
ignored or removed from the analysis (Łopucki et al., 2022). These 

changes may affect the statistical power of the models used to detect 
long-term trends and may lead to biased estimation of parameters by 
violating the assumptions underlying the modelling approach. As a 
result, weaknesses in statistical analyses (Buschke et al., 2021; Des-
quilbet et al., 2020; Fraser et al., 2018) or in data collection designs 
(Kamp et al., 2016) have been highlighted and used to question the 
validity or robustness of some population declines. 

Much attention has been given to the key issue of data distribution, 
as specific assumptions are made in models in this regard, and failure to 
meet these assumptions can lead to a biased estimation of parameters 
Freckleton, 2009; Grafen and Hails, 2002). Count data are traditionally 
associated with the Poisson distribution (Fokianos, 2012; James and 
Sahir, 2022; Zuur et al., 2007), which has a single parameter (λ) and 
assumes equal variance and mean (i.e., equidispersion). However, count 
or density data may show either over/underdispersion when the vari-
ance is higher or lower than the mean, respectively. Differences between 
the observed and expected variance may result from deviations from 
complete spatial randomness (Lynch et al., 2014; Xekalaki, 2006), e.g. 
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territoriality resulting from intra- and/or interspecific competition leads 
to a regular spatial distribution of individuals or pairs, and thus 
underdispersed data (Cornulier and Bretagnolle, 2006; Svärdson, 1949). 
Conversely, clustered distributions of individuals generally produce 
overdispersed data (Hilbe, 2011). Another source of deviation from the 
basic assumptions is the measurement error, which generally leads to 
overdispersion of the observed data (Guo and Li, 2002), though small 
measurement error compared to the abundance may yield under-
dispersion (Lynch et al., 2014). Ignoring over/underdispersion can 
result in poor interpretations and misleading conclusions (Campbell, 
2021; Richards, 2008; Stoklosa et al., 2022; Harrison, 2014). First, 
confidence intervals in overdispersed data tend to be too narrow and the 
p-value overoptimistic, leading to the detection of a false positive effect 
(i.e., an inflated Type I error). The opposite is true for underdispersion, 
where the main problem is a loss of power which may lead to the 
non-detection of a positive effect (i.e., a Type II error) when it does 
actually exist (Forthmann and Doebler, 2021; Hartig, 2022). In the 
particular case of trend estimates, failure to take into account over-
dispersion can lead to distortions in their evaluation (Tirozzi et al., 
2022). Underdispersion is perceived as less problematic due to its con-
servative inference (resulting from overestimated standard errors), and 
has thus been less of an issue in the literature (Forthmann and Doebler, 
2021). However, the inability to detect truly significant trends is a 
critical issue for the design of efficient management strategies for 
conservation-dependent species (Tirozzi et al., 2022). 

Therefore, the presence of over/underdispersion suggests that a 
change in modelled distribution should be applied. Classical alternatives 
for handling overdispersion are the quasi-Poisson and negative binomial 
(NB) distributions (Hoef et al., 2007; Johnson, 2012; Lindén and 
Mäntyniemi, 2011), while the generalized Poisson (GP) and the 
Conway-Maxwell-Poisson (CMP) distributions are commonly suggested 
to deal with underdispersion (Harris et al., 2012; Sellers and Shmueli, 
2010), although they are capable of dealing with overdispersion as well 
(Sellers and Morris, 2017). However, changing the model distribution 
can lead to more complex and time-consuming models, a concern given 
the exponential increase in the amount of data to be processed (Farley 
et al., 2018). Furthermore, large data sets will produce, on average, 
smaller p-values (Johnson, 1999; White et al., 2014), and thus the 
dispersion test on the model residuals will yield significant rejection of 
the null hypothesis (i.e., equidispersion) as it is unlikely to have a 
perfectly fitted model (Hartig, 2022). This raises the question of when 
over/underdispersion becomes an issue and needs to be addressed, and 
in particular whether the cost of using more complex distributions off-
sets the cost of accuracy loss in trend estimates (Gilad-Bachrach et al., 
2003). 

In addition, modelling often involves the use of confounding cova-
riates in the statistical model to avoid bias. The way in which covariates 
are included in the model is also subject to two different approaches, 
either based on a priori ecological assumptions or a posteriori statistical 
analyses. In the former, covariates are fitted with their supposed effects 
based on assumptions about the ecological mechanisms at play. A single 
a priori model is therefore tested, regardless of its fit to the data, leading 
to major differences depending on the study model, authors, and hy-
potheses. For example, some studies deliberately ignore certain con-
founding variables, such as weather (Harrison et al., 2014), while others 
include each variable as a linear covariate (Bas et al., 2008; Ellis and 
Taylor, 2018). Such an approach also reinforces the use of covariates 
that are often already well known, which can lead to a circular argu-
ments (Adde et al., 2023). In the alternative approach, modellers typi-
cally perform a covariates model selection by comparing models’ 
parsimony, i.e., the balance between simplicity and goodness of fit (Aho 
et al., 2014), to identify the “best” subset of all possible combinations. 
The choice can be automated or performed manually and is based on 
statistical decision procedures such as information criteria (e.g., the 
Akaike information criterion [AIC], see Akaike, 1973; the Bayesian in-
formation criterion [BIC], Schwarz, 1978) (Briscoe et al., 2021; Gabriel 

et al., 2022; Kouba et al., 2021; Öberg et al., 2015), or R2 comparison 
(Vergara and Pablo, 2007). These different methods may lead to 
different results when applied the same dataset: for example, the BIC 
will select simpler models than the AIC as its penalty factor is larger 
(Heinze et al., 2018). There is no simple rule for choosing between the 
available options, since the optimal model for the purpose of prediction 
may be different from the selected “true” or “correct” model (Chakra-
barti and Ghosh, 2011; Shmueli, 2010). In addition, some covariates 
may have nonlinear effects that require modelling using various alter-
native shapes (e.g., with several polynomial orders), making selection 
even more difficult and time consuming (Tredennick et al., 2021). 
Consequently, there is a trade-off between model parsimony (and pre-
sumably, robustness) and computation time. 

Here, we used a long-term data set to contrast these two opposite 
strategies for modelling trends, namely a single model approach (based 
on a priori ecological knowledge) vs. a posteriori multi-model compar-
ison approach. We used birds as study models since bird monitoring 
schemes are widespread and often extend over a long period (e.g., above 
50 years) (Sauer et al., 2013). We focused on the European skylark 
(Alauda arvensis), a species for which the probability of detection 
(Newson et al., 2013) is not an issue. Focusing on a single species further 
allowed us to avoid the difficulties involved in modelling trends for 
several species with different abundances (Freckleton, 2009; Leung 
et al., 2020). We estimated the long-term trend for skylark abundance in 
a 450 km2 study area in which abundance data have been obtained for 
this species since 1996 (i.e., for 27 years) using general linear mixed 
models (GLMM). The single model approach endorsed a classical Pois-
son distribution for model counts, used covariates fitted with their 
supposed a priori effects, and was expected to be faster in computing 
time. The multi-model approach compared several distributions (i.e., 
Poisson, NB, GP, and CMP) to account for possible over/underdispersion 
and included several confounding variables (tested up to their cubic 
polynomial order) to select the most parsimonious model among the 
candidates, based on the BIC (Schwarz, 1978). The main aim of this 
study is to assess how modelling choices affect trend estimates and their 
level of precision (measured by standard error) considering computation 
time and the modelling skills required. 

2. Materials and methods 

2.1. Study site and species 

This study was conducted in the Long-Term Social Ecological 
Research site Zone Atelier ‘Plaine & Val de Sèvre’ (LTSER-ZAPVS) 
(South of Department Deux-Sèvres, Central Western France, 46◦14′N, 
0◦24 W). The area is an agricultural landscape of 450 km2 mainly 
dedicated to the intensive production of cereals. It is an open landscape 
with a few hedges and forest fragments, and about 10% of the surface is 
covered by small to medium size villages (Bretagnolle et al., 2018). 
Species of the EU Bird Directive are present in the LTSER-ZAPVS, which 
led to the designation of half of the study area (207.6 km2) as a Specially 
Protected Area in 2004 (Plaine de Niort Sud-Est, FR5412007). 

Our study focused on the skylark, Europe’s most abundant farmland 
bird (Koleček et al., 2015). The skylark is a widespread farmland bird 
which lives in open habitats, especially in mixed arable fields and 
meadows, where its population has strongly declined in Europe (− 58%, 
1980–2021; PECBMS 2022). The species is sensitive to farmland man-
agement and is often used as an indicator species (Wakeham-Dawson, 
1995; Csikós and Péter, 2020). It usually breeds twice each spring, with 
an early nesting in April and a late nesting between the end of May and 
the beginning of June (Delius, 1965). Both population size and singing 
activity are therefore expected to display a strong seasonal pattern in 
this species (Hoffmann et al., 2016). Our dataset should be able to 
capture such seasonality since the counting period extends over 91 days 
from April 2 to July 2, thus covering the entire skylark breeding season 
at this latitude (Delius, 1965). Moreover, skylark individuals have a very 
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loud, detectable, and identifiable song (Chamberlain and Gregory, 1999; 
Donald, 2004), so there is very little chance of missing a singing skylark 
if it is present at a site or of confusing it with other species; no other birds 
in our study site sing in flight, except the tree pipit (Anthus trivialis) and 
the whitethroat (Sylvia communis) which do not sing high in the sky and 
favour hedges, which are avoided by skylarks. 

2.2. Sampling scheme and protocol of count data 

Since 1995, skylark populations have been monitored using a 
network of 160 permanent point counts (Bretagnolle et al., 2018). The 
sampling design divided the study area into eight sectors, each with two 
transects (Brodier et al., 2014) bearing ten points separated by at least 
500 m (Fig. 1). 

On each survey point, trained ornithologists counted birds within a 
precise radius of 200 m. This radius was selected to reduce detectability 
biases and avoid observations overlapping between two neighbouring 
points. The approximate position and behaviour (singing, flying, or on 
the ground) of each bird was noted on survey maps. Rainfall (0 or 1), 
wind speed (0 to 3), and cloud cover (0 to 8) were also recorded. 
However, observers did not carry out counts in very unfavourable 
conditions (fog or heavy rain, or constant wind above 10 m/s). Counts 
were performed in the morning (95% of the counts between 7 a.m. and 
11 a.m.) once in the breeding season (usually between April 10 and May 
10) or twice since 2006, with a second survey added between May 10 
and June 25. Due to various technical and funding constraints, protocols 
were slightly modified over the course of the study period: in addition to 
changes in the number of surveys per year, the point count duration was 

also changed from 5 to 10 min. Details on the protocols and changes per 
year are given in ESM (Table S1). The first counts started in 1995, but we 
excluded this first year from the survey because most counts were car-
ried out outside the optimal conditions, particularly very late in the 
season (July) and in the late morning (90% of the counts after 10 a.m.). 

2.3. The basic model 

All statistical analyses and modelling were conducted with the R 
software (v. 4.0.2, R Core Team, 2020), using a Lenovo AMD Ryzen 7 
quad-core computer. 

To estimate trends in skylark abundance between 1996 and 2022, we 
produced generalized linear mixed effects models (GLMM) using the 
glmmTMB package (Brooks et al., 2017). All our models are derived 
from a basic model, with the same random and fixed effects structure. To 
consider all counts (sessions 1 and 2), we included the site ID as a 
random factor to account for repeated measurements (Bolker et al., 
2009; Zuur et al., 2009), while we further accounted for random vari-
ation in trend per count site by nesting the year within the site ID (year| 
site_id). Although the observer effects have little impact on long-term 
trends (Kendall et al., 1996; Eglington et al., 2010), we kept this infor-
mation by including the observer ID as a random effect. We included a 
spatial term as a fixed effect in the form of simple X, Y, and X*Y co-
ordinates to account for spatial autocorrelation (Dormann et al., 2007; 
Tirozzi et al., 2021; see ESM Appendix A). Counting time was also 
included as a fixed factor in the models to account for its variation 
throughout the study period (i.e., it varied from 5 to 10 min across the 
years), which can affect counts (Bonthoux and Balent, 2011; Fuller and 

Fig. 1. Location of skylark counting sites within the Long-Term Social Ecological Research site ‘Zone Atelier Plaine & Val de Sèvre’ in the department of Deux-Sèvres, 
Western France. Each colour represents one of the eight sectors. In each sector, count points are distributed along two crossing transects, each bearing ten points 
separated by about 500 m. 
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Langslow, 1984; Leu et al., 2017). Finally, the year was systematically 
modelled as a fixed linear trend effect to allow comparison between 
models. 

2.4. Ad hoc comparison between two modelling approaches 

The basic model is common to the two modelling approaches, which 
otherwise differ in the choice of distribution, covariates, and criteria for 
model selection. The first modelling approach, the a priori single model 
approach, used the Poisson distribution which is most commonly used 
for the analysis of count data (Lynch et al., 2014; Ma et al., 2012), to 
which covariates that could affect the number of skylarks according to 
their supposed a priori effects were also added. Except for rain, which 
was included as a factor (presence vs. absence), weather conditions (i.e., 
cloud cover and wind) were included as numeric linear effects, as is 
commonly done for weather covariates of long-term trends (Bas et al., 
2008; Sokos et al., 2016). Temperature during each count was approx-
imated by retrieving hourly temperatures from the NOAA database 
using the R ‘rnoaa’ package and using linear interpolation to obtain 
temperature at the one-minute precision scale (see ESM Appendix B). As 
warmer-than-average conditions during the breeding season are 
favourable for skylarks (Brodier et al., 2014), we used a linear effect to 
model it. To account for a potential relationship between skylark 
abundance and season, we included the Julian date (where 1 = January 
1) as a quadratic term because of the expected seasonal trend in skylark 
abundance during the breeding season (Hoffmann et al., 2016). Lastly, 
to standardise the time at which counts were performed throughout the 
season, we used the difference between the effective counting hour and 
the sunrise hour (hereafter referred to as ‘hour’) as a linear effect 
because the number of skylarks counted is expected to be higher at 
sunrise than in the late morning (Blake, 1992; Verner and Ritter, 1986). 

For the multi-model approach, we first assessed the quality of fit of 
four distributions: Poisson, negative binomial (NB), generalized Poisson 
(GP), and Conway-Maxwell-Poisson (CMP) distributions. Then we 
selected the covariates of interest for each of these four models, by 
comparing the basic model with every possible model, including the 
covariates in their different forms (linear, quadratic, or cubic). Model 
selection was performed manually. 

For both approaches we centred and standardised all variables in the 
models to improve the estimation of linear effects in the presence of 
polynomials and the interpretability of the regression coefficients 
(Schielzeth, 2010), except for rain which was coded as a factor. 

We used the BIC (Schwarz, 1978), rather than the AIC to compare 
candidate models as the AIC is more appropriate for finding the best 
model for accurate prediction, whereas the BIC is better suited to 
comparing a few specific models (Aho et al., 2014; Chakrabarti and 
Ghosh, 2011; Dziak et al., 2020). We also checked the distribution of the 
residuals, since this can reveal over/underdispersion or zero-inflation, 
using the Dharma package (v 0.4.5, Hartig, 2022). For the zero- 
inflation test, the package produces a ratio that compares the 
observed number of zeros with the zeros expected from simulations: 
ratios <1 and > 1 indicated that the observed data had fewer or more 
zeros than expected, respectively. For dispersion, simulation-based tests 
were performed to compare the observed raw residuals’ variance against 
the simulated residuals’ variance: a ratio = 1 indicates equidispersion, <
1 indicates underdispersion, and > 1 indicates overdispersion. We 
further compared the computation time required for the various models, 
using the R function difftime from the base R commands. The two 
modelling approaches were therefore compared according to their BICs, 
residual distributions, zero-inflation, and computing times. Finally, we 
compared both approaches in terms of their trend estimates and stan-
dard errors. 

3. Results 

3.1. Choice of distributions: statistical fit vs. computation time 

We found that the model using CMP distribution was the most 
parsimonious according to BIC ranking (Table 1). The difference in the 
BIC value with the next best-fit distribution (i.e., GP) was 157. The 
initial Poisson model was the third best model, with a ΔBIC of 476 
compared to CMP. The residuals of each of the four models were 
underdispersed, but there was a clear difference between the GP and 
CMP models on one side and the NB and Poisson models on the other 
(ratio GP & CMP ~0.735 vs. ratio NB & Poisson ~0.615), also for the p- 
value (GP & CMP ~ 0.02 vs. NB & Poisson <0.001; see Table 1). 

In addition, the observed data had fewer zero counts than expected 
with Poisson and NB distributions (zero-inflation test: ratio = 0.76, p- 
value <0.001; see Table 1) but not with the other two distributions. 
Finally, the computation time of the Poisson model was the lowest by 
far; the computation time of the other models was at least 15 times 
longer (Table 1). Despite the CMP distribution model exhibiting the best 
fit, it involved a computation time 650 times longer than that of the 
Poisson model. The GP distribution may represent a good compromise, 
as it produced a more parsimonious model (ΔBIC = 319) and maintained 
a reasonable computation time (only 15 times longer than the Poisson 
model). 

3.2. The effects of using covariates 

Adopting the single model approach meant using a Poisson distri-
bution and integrating a set of covariates chosen based on a priori 
ecological knowledge and assumptions. The calculation time of this 
model was double that of the initial Poisson model, and it also exhibited 
decreased fit quality (ΔBIC = 36, see Table 2). With regard to the re-
siduals, the addition of the covariates did not compensate for the 
underdispersion (dispersion test: ratio = 0.61, p-value <0.001; Tables 1 
& 2) or the lack of zero (zero-inflation test: ratio = 0.76, p-value <0.001; 
Tables 1 & 2) present in the initial model. 

When adopting the multi-model approach, all covariates up to their 
third polynomial order were compared with the exception of rain, for 
which only presence was tested. Running all putative models (i.e., four 
distributions, five covariates with three shapes and one with a single 
shape), we thus produced 64 models in total, which required about 11 h 
of calculation. No weather variables entered the final model, as the BIC 
was always lowest when these covariates were absent. Only one co-
variate was systematically retained: the Julian day, as a linear effect. 
The hour, with a quadratic effect, was also retained, but only in models 

Table 1 
Summary table of the four initial models with different distributions: Poisson, 
negative binomial (NB), generalized Poisson (GP), and Conway-Maxwell- 
Poisson (CMP). The Poisson model is the reference with a BIC of 25,107 and a 
computation time of 3 s. The ΔBIC is calculated for all models relative to the 
model reference. Disp indicates the dispersion parameter (values <1 indicate 
underdispersion); P-val_D indicates the p-value of the residual dispersion test; 
Z_inf indicates the zero-inflation parameter (values <1 indicate that the 
observed data have fewer zeros than expected; values >1 indicate more zeros 
than expected). P-val_Z indicates the p-value of the zero-inflation test; the right 
column indicates the ratio of calculation time between the model and the 
reference model.  

DISTR. ΔBIC R. dispersion Zero-inflation Computation Time 
ratio 

Disp P-val_D Z_inf P-val_Z 

Poisson 0 0.62 
<

0.001 0.76 
<

0.001 1 

NB +9 0.61 
<

0.001 0.77 0.02 15 

GP − 319 0.74 0.03 0.98 0.89 15 
CMP − 476 0.73 0.01 1.04 0.70 650  
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using distributions that managed underdispersion, i.e., GP and CMP 
(Table 2). 

Adding covariates through the model selection procedure improved 
(decreased) the BIC in all four distributions (Poisson = 5, NB = 4, GP = 9 
and CMP = 11, see Tables 1 & 2). Changes in computation time, on the 
other hand, were variable: it remained stable for the Poisson model, 
decreased for the NB (by 33%) and GP (66%) models, and increased for 
the CMP model (~25%, see Tables 1 & 2). With regard to the residuals, 
the addition of covariates did not compensate for the underdispersion in 
the Poisson, NB, and GP models (dispersion test: p-value <0.05; Table 2) 
but did so for the CMP model (dispersion test: p-value >0.05, Table 2). 
Finally, the addition of covariates did not affect the lack of zero, which 
was always present in the Poisson and NB models (zero-inflation test: 
ratio = 0.76, p-value <0.05; Table 2) and always absent in the GP and 
CMP models (zero-inflation test: p-value >0.05; Table 2). 

3.3. Comparison between the two approaches and consequences on 
estimated trends 

The a priori single-model approach led to a much less parsimonious 
model than the multi-model approach (ΔBIC = 523, Table 2), but it ran 
400 times faster than the simple final model of the multi-model 
approach, and around 20,000 times faster when considering all the 
models produced in the latter approach with covariates. The multi- 
model approach resulted in equidispersed residuals (dispersion test: p- 
value >0.05; Table 2), whereas the approach based on a single a priori 
model led to underdispersed residuals and a lack of zero (dispersion test 
and zero-inflation test: ratio < 1 and p-value <0.001; Table 2). 

However, despite these strong differences, both approaches yielded 
similar and significant negative trends of skylark abundance, with 
almost identical year coefficient estimates (β estimates: single model =
− 0.0147 ±0.0030 and multi-model = − 0.0138±0.0027), with a dif-
ference in the standard error of <0.001 between the models (Table 3). 
Indeed, there was no statistical difference between the estimates (t-test: 
t = 0.24, p-value > 0.05; see ESM Appendix C). Using predicted values 
from the GLMM model and contrasting the two approaches, the decrease 
in abundance between 1996 and 2022 varied from 30.12% to 31.82%, i. 
e., a variation of one twentieth of the trend (Fig. 2). 

4. Discussion 

In this study, we investigated whether modelling choices, in partic-
ular the method used to select covariates and the model distribution, 
affected long-term trend estimates for a skylark population and their 
level of precision. We contrasted two extreme and opposite modelling 
strategies: one based on a priori ecological assumptions (a single model 
approach) and the other based on a posteriori statistical properties (a 
multi-model comparison). 

We found a clear trade-off between the parsimony of the model and 
its complexity, measured here by computation time: the better the 
model fits the data, the higher the computation time. Indeed, compu-
tation time for the single model was up to four orders of magnitude 
faster than for the multi-model approach. It may be possible to overcome 
this computation time drawback through the use of high-performance 
computers (Ruan et al., 2017; Tirozzi et al., 2022) or parallelization 
techniques (Polanco-Martínez and López-Martínez, 2021). However, 
this requires access to this type of computer, along with additional 
modelling skills. 

The single-model approach, using a Poisson distribution, revealed 
the presence of underdispersion. This is likely a result of the regular 
spatial distribution of the skylarks. Indeed, the study site is an agricul-
tural landscape with few hedges and forest fragments, and counts were 
carried out at sites that are favourable for skylarks (no counts were 
carried out in or close to woodland or urban areas), which led to a 
uniform presence of the species at all counting sites. Indeed, at least one 
skylark per year was present at 98% of the surveyed sites. As a result, we 
found a deficit of zero counts in our model. In addition, skylarks are 
easily identifiable and detectable (Chamberlain and Gregory, 1999; 
Donald, 2004), which considerably reduces the risk of error and may 
lead to underdispersion (Lynch et al., 2014). The multi-model approach 
managed these biases (underdispersion and zero count deficit) by 
selecting the CMP model and by the addition of relevant covariates. 

However, despite differences in BIC, calculation time, under-
dispersion and zero count deficit, the long-term trend estimates for the 
skylark population produced by the two approaches differed by <2% in 
27 years (− 30.1% vs − 31.8%, Table 3). This finding contrasts with other 
studies (with smaller datasets) where the choice of distribution to ac-
count for underdispersion was found to be important (Brooks et al., 
2019). One explanation may be that our sampling protocol was well 
planned and sufficient (in terms of repetition, we used two sessions) and 
therefore enabled us to correctly detect trends over time despite less 
precise analyses (Sulkava et al., 2007). Another explanation could be 
that the large amount of data limited the impact on the estimated trend 
(Campbell, 2021), though previous studies have shown that even in 
cases of large data sets failure to use the appropriate distribution leads to 
distortions in trend estimates, at least in the case of overdispersion 
(Tirozzi et al., 2022). Methods dealing with overdispersed data are 
already available, since it is a common case in count data. The most 
popular method is TRIM (Pannekoek and Van Strien, 2005), but other 

Table 2 
Summary table comparing the effect of including covariates in the two approaches (APP, single model approach and multi-model approach). Covariates are absent 
from the model (0), or present as a linear effect (1), quadratic effect (2) or cubic effect (3). The initial Poisson model (see Table 1) is the reference, with a BIC of 25,107 
and a computation time of 3 s. The ΔBIC is calculated for all models relative to this reference. Disp indicates the dispersion parameter (value <1 means under-
dispersion); P-val_D indicates the p-value of the residual dispersion test; Z_inf indicates the zero-inflation parameter (value <1 means that the observed data has fewer 
zeros than expected / value >1 more zero than expected); P-val_Z indicates the p-value of the zero-inflation test; CT indicates the ratio of calculation time between the 
model and the reference model.  

APP. DISTR. COVARIATES ΔBIC R. dispersion Z-inflation CT 

Rain Cloud Wind Hour T◦ Date Disp P-val_D Z_inf P-val_Z 

Single model Poisson 1 1 1 1 1 2 +36 0.61 < 0.001 0.76 < 0.001 2 

Multi-model 

Poisson 0 0 0 0 0 1 − 5 0.62 < 0.001 0.76 0.02 1 
NB 0 0 0 0.0 0 1 +4 0.62 < 0.001 0.76 < 0.001 10 
GP 0 0 0 2 0 1 − 328 0.74 0.04 0.98 0.90 5 

CMP 0 0 0 2 0 1 − 487 0.73 0.06 1.05 0.72 800  

Table 3 
Summary of generalized linear mixed models (GLMM) used to assess skylark 
population trends under both approaches. β = estimate of the regression coef-
ficient for the explanatory variable ‘Year’; SE = standard error of β; T% = per-
centage of change in population from 1996 to 2022 according to the prediction 
of the GLMM model.  

APPROACHES β SE p-value T% 

Single model 
Poisson Distr. 

− 0.0147 0.0030 < 0.001 − 31.82 

Multi-model 
CMP Distr. 

− 0.0138 0.0027 < 0.001 − 30.12  
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methods are available, for example the use of hierarchical Bayesian 
modelling (Sauer et al., 2017). It is also possible to use distributions that 
take account of overdispersion (e.g., NB, see Le Rest et al., 2015) or to 
manage residual spatial autocorrelation in order to reduce over-
dispersion (Le Rest et al., 2013). Thus, our results may not be general-
isable to all long-term trend modelling. Moreover, in many bird species, 
zero-inflation rather than a deficiency of zero counts is the rule, which 
can require the use of complicated modelling procedures (Blasco-Mor-
eno et al., 2019; Martin et al., 2005). Such difficulties were avoided here 
because the skylark is an abundant bird species in our study area. 
Therefore, a similar study using rarer species, possibly leading to over-
dispersion, is warranted. 

Another significant result of our study is that adding covariates did 
not significantly influence the trend estimate, a result which has already 
pointed out for the skylark (Bas et al., 2008; Tirozzi et al., 2022). One 
explanation could be that our data set was actually quite standardised in 
terms of environmental conditions, since counts were conducted at the 
optimal time of day (~95% of counts were performed between 7 a.m. 
and 11 a.m.), only during the peak breeding period (~85% between 
April and May), and always in favourable weather. In addition, rain and 
wind, which are factors that could clearly reduce detection probability 
for the forest counts, have much less influence in open habitat (Ralph 
et al., 1995). In other words, standardising protocols by restricting 
counts to optimal conditions simplifies statistical modelling (Brotons 
and Herrando, 2011; Oakley et al., 2006). Covariate selection may, 
therefore, be a key concern only when protocols are not standardised or 
restrictive enough (Sauerbrei et al., 2020). Finally, our study indicates 
that for underdispersed data obtained using a reasonably standardised 
protocol, use of the raw data and the Poisson distribution save much 
computing time with no cost in terms of trend estimate quality. 

In our study area, which is mainly dedicated to intensive cereal 
production, a previous study on the skylark (Brodier et al., 2014) found a 
20% decline between 1996 and 2012. Our results confirm this decline, 
updated to ~31% over 1996–2022. Such a trend is not new for this 
species and is found throughout Europe, including in France (− 25% 
2001–2018: Vigie-Nature, 2023), Germany (− 55% 1983–2019: NABU, 

2023), Switzerland (− 52% 1990–2021: Vogelwarte, 2023), Italy 
(− 66%, 2000–2020: Rete Rurale Nazionale and Lipu, 2020), and the UK 
(− 17.5%, 1995–2018: Hughes et al., 2021). Skylarks are highly sensitive 
to decreased crop diversity, intensive agricultural management (e.g., 
excessive mowing or use of pesticides and fertilisers) (Chamberlain and 
Siriwardena, 2000; Chamberlain and Gregory, 1999; Koleček et al., 
2015), and urbanisation (Loretto et al., 2019). All these reasons may 
explain these declines in skylark abundance, as human activity has 
largely transformed ecosystems over the last century (Ellis and Taylor, 
2018; Goudie, 2013). 

To conclude, this study aimed to explore how modelling approaches 
may affect the outcome of long-term monitoring data analysis. Our study 
suggests that a simple modelling approach using a classical Poisson 
distribution without adding covariates is appropriate for modelling 
long-term trends from data collected under well-designed protocols, at 
least when the data are underdispersed. To check the generality of our 
findings, further investigation needs to be performed on multiple species 
data, rarer species, and smaller data sets to check the generality of our 
findings. 
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Fig. 2. Population trends of skylarks in the LTSER-ZAPVS between 1996 and 2022. The y-axis indicates the relative abundance of the species at a given site. The red 
line represents the trends obtained by the multi-model approach with a Conway Maxwell Poisson (CMP) distribution. The blue line illustrates the trends obtained by 
the ecological single model approach with a Poisson distribution. The raw mean number of skylarks counted per year is represented by a black circle with its 
associated standard error. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

T. Schneider-Bruchon et al.                                                                                                                                                                                                                   



Ecological Informatics 77 (2023) 102222

7

Acknowledgements 

We would like to thank all the 79 fieldworkers who have contributed 
to this extensive data collection since 1995, without whom this study 
would not have been possible. We also thank Elva Fuentes for her help in 
the Fig. 1 production. The manuscript was read and improved for En-
glish by Cambridge proof reading. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ecoinf.2023.102222. 

References 

Adde, Antoine, Rey, Pierre-Louis, Fopp, Fabian, Petitpierre, Blaise, Schweiger, Anna K., 
Broennimann, Olivier, Lehmann, Anthony, et al., 2023. Too many candidates: 
embedded covariate selection procedure for species distribution modelling with the 
Covsel R package. Ecol. Inform. 75 (July), 102080 https://doi.org/10.1016/j. 
ecoinf.2023.102080. 

Aho, Ken, Derryberry, DeWayne, Peterson, Teri, 2014. Model selection for ecologists: the 
worldviews of AIC and BIC. Ecology 95 (3), 631–636. https://doi.org/10.1890/13- 
1452.1. 

Akaike, H., 1973. Information theory and an extension of the maximum likelihood 
principle. In: Petrov, B.N., Csaki, B.F. (Eds.), Second International Symposium on 
Information Theory. Academiai Kiado, Budapest, pp. 267–281. 

Bas, Yves, Devictor, Vincent, Moussus, Jean-Pierre, Jiguet, Frédéric, 2008. Accounting 
for weather and time-of-day parameters when analysing count data from monitoring 
programs. Biodivers. Conserv. 17 (14), 3403–3416. https://doi.org/10.1007/ 
s10531-008-9420-6. 

Blake, John G., 1992. Temporal variation in point counts of birds in a lowland wet forest 
in Costa Rica. Condor 94 (1), 265–275. https://doi.org/10.2307/1368816. 
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Rest, Le, Kévin, David Pinaud, Bretagnolle, Vincent, 2013. Accounting for spatial 
autocorrelation from model selection to statistical inference: application to a 
National Survey of a diurnal raptor. Ecol. Inform. 14 (March), 17–24. https://doi. 
org/10.1016/j.ecoinf.2012.11.008. 
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