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Abstract
Integument colouration can influence many aspects of fitness, and is under strong sexual selection. Amphibians often express 
sexual dichromatism, and ultra-violet (UV) colouration is usually biased toward males as a sexual signal. As an honest sig-
nal, colouration is related to several individual traits, but can also be related to environmental factors such as anthropogenic 
pollutants, to which amphibians are highly sensitive. In this study, we investigated sexual dichromatism and UV reflectance 
covering a large visual spectrum (wavelength ranging from 300 to 700 nm) on different body areas (throat, ventral and dorsal 
areas), in a widespread amphibian species, the spiny toad (Bufo spinosus). Then, we tested the impact of chronic exposure to 
two widespread herbicides (glyphosate’s primary metabolite [AMPA] and Nicosulfuron) on their colouration. We found a 
strong but unexpected sexual dichromatism with females reflecting more in the UV spectrum (throat and ventral area) than 
males, suggesting these body parts might be critical in intra-specific signalling. Females with higher ventral UV reflectance 
were in better body condition, suggesting an honest signal role of UV reflectance which could influence male choice. Throat 
colouration was further differentially influenced by agrochemicals according to sexes. In AMPA-exposed males, throat was 
more saturated in yellow-orange than in control males, and Nicosulfuron exposure decreased the throat’s reflectance hue in 
females, which can bear consequences on mate attractiveness. Future studies need to investigate the underlying mechanisms 
that are altered by agrochemical exposure.
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Introduction

Integument colouration is a major interface between indi-
viduals and their environment, as it influences many aspects 
of their biology including anti-predator defences through 
crypsis (Caro 2005), thermoregulation (Stuart-Fox and 
Moussalli 2009), regulation of physiological processes 

(Caro 2005), immunity (Lifshitz and St Clair 2016), parasitic 
exploitation (Côte et al. 2018), UV protection (Jablonski 
1998; Clusella Trullas et al. 2007) and social and sexual 
signaling in both males and females (Bradbury and Vehren-
camp 1998; Caro 2005; Delhey et al. 2007; Stuart‐Fox et al. 
2007; Martín and López 2009; Clutton-Brock 2009; Secondi 
et al. 2012; Olsson et al. 2013; Heath et al. 2013; Endler and 
Mappes 2017). Given the role of body colouration in such 
fitness-related functions, the mosaic of colours displayed by 
an animal can therefore convey information about individual 
quality and is considered to be under strong sexual selection 
(Hews and Moore 1995; Bradbury and Vehrencamp 1998; 
Ptacek 2000; Martín and López 2009; Svensson and Wong 
2011; Sever and Staub 2011; Heath et al. 2013; Blévin et al. 
2014; Endler and Mappes 2017; Weaver et al. 2018).

From vibrant to substrate-matching colours, amphibians 
show a strong diversity of colourations and contrasting pat-
terns (Rudh and Qvarnström 2013). Some amphibian species 
express sexual dichromatism (i.e. colour difference between 
the two sexes); (Lifshitz and St Clair 2016), with adult males 
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being more brightly coloured than adult females (Bell and 
Zamudio 2012). Colour signals can facilitate gender recogni-
tion, influence courtship behaviour and mate-choice, even in 
nocturnal species (Gomez et al. 2009; Sztatecsny et al. 2010; 
Secondi et al. 2012). A chromatophore unit (i.e. pigment 
containing cells) of amphibians can combine properties of 
different chromatophores to achieve rapid colour changes 
(Bagnara et al. 1968; Rudh and Qvarnström 2013). Across 
178 anuran species, males were shown to use rapid colour 
change (dynamic dichromatism) to mediate socio-sexual 
interactions during the breeding season (Bell et al. 2017). 
Dynamic dichromatism often precedes explosive breeding, 
and could facilitate sexual recognition by helping males dis-
tinguish each other from females (Doucet and Mennill 2010; 
Sztatecsny et al. 2012; Stückler et al. 2022).

Although sexual dichromatism may not be the most 
prevalent secondary sexual trait in anurans (Duellman and 
Trueb 1986; Bell and Zamudio 2012; Bell et al. 2017), fea-
tures non-visible to human eye, such as ultra-violet (UV) 
signalling, may be much more common than previously 
thought. Various taxa, including amphibians, have retinal 
photopigments that allow for UV vision (Jacobs 1992). Most 
bright integument colour patterns reflect light maximally 
in the UV portion of the spectrum, constituting UV col-
our signals (Burkhardt and Finger 1991; Fleishman et al. 
1993; Deutschlander and Phillips 1995; Stoehr and McGraw 
2001; Hunt et al. 2001; Pérez i de Lanuza and Font 2007; 
Martin et al. 2013). This pattern is mainly expressed by 
males (Stoehr and McGraw 2001; Pérez i de Lanuza and 
Font 2007; Martin et al. 2013) and to a lesser extent by 
females (Martin et al. 2013). In ectothermic species, iri-
dophores are chromatophores responsible for these bright 
reflecting colours, as they contain reflecting platelets (Rudh 
and Qvarnström 2013). As observed in reptiles (Pérez i de 
Lanuza and Font 2007) and caudates (Secondi et al. 2012), 
UV reflectance could increase sexual dichromatism and 
male conspicuousness in anurans. Additionally, skin colour 
is mostly influenced by pigments contained within special-
ized groups of cells in the upper epidermal layer of skin. 
Melanins are the most prevalent pigments, producing many 
yellow–brownish (pheomelanin) and grey–black (eumela-
nin) colours (McGraw 2005). Melanogenesis is controlled 
genetically and vertebrates synthesize melanins from inter-
nal ressources (Lin and Fisher 2007). By contrast to melanin, 
carotenoid pigments are acquired through the diet (Schiedt 
1989). They produce many yellow, orange and red patches, 
which are central to ornamentation (Blount and McGraw 
2008).

In amphibians, colouration has been related to several 
individual traits such as body size, body condition or hor-
mone levels (Nilsson Sköld et al. 2013; Höbel et al. 2022; 
Barzaghi et al. 2022), and can also vary with environmental 
factors. For instance, temperature, habitat (e.g. site elevation, 

productivity, background colour) or food availability have 
been related to colour variations in amphibians (Norris and 
Lowe 1964; Sztatecsny et al. 2010; Mack and Beaty 2021; 
Barzaghi et al. 2022; Mirč et al. 2023). Since colouration 
is thought to be an adaptive trait (Rudh and Qvarnström 
2013), exogenous factors leading to colour modification 
could affect individual fitness.

The ubiquity and plasticity of integument colouration 
make it a powerful indicator of the competing costs of 
environmental stressors, such as anthropogenic pollutants 
(Lifshitz and St Clair 2016), among which pesticides are 
dominant in agricultural habitats where several amphibians 
persist (McConnell et al. 1998; LeNoir et al. 1999; Rashid 
et al. 2010; Guillot et al. 2016). Indeed, pesticides primar-
ily cause substantial damages to organisms by producing 
free radicals that overwhelm the antioxidant system (Gal-
ván and Alonso-Alvarez 2009; Cheron et al. 2022), and the 
major groups of animal pigments exhibit antioxidant activity 
(McGraw 2005) suggesting a trade-off between the expres-
sion of colouration and resistance to pollutants (Arellano-
Aguilar and Macías Garcia 2008). Pollutants have been 
related to enhanced traits coloured by black melanin (Lif-
shitz and St Clair 2016; Goiran et al. 2017), reduced carot-
enoid colouration (Baatrup and Junge 2001; Alonso-Alvarez 
and Galván 2011; Shenoy 2012), as well as modified hue and 
saturation of individuals (Larramendy 2017; Ujhegyi and 
Bókony 2020). These impairments could result from nega-
tive effects of pollutants on gonad function (McCoy et al. 
2008; Hayes et al. 2010), leading to sex steroid disruption 
(Trudeau et al. 2020). Testosterone, for instance, can affect 
chromatophore expression and xanthophores dispersion in 
amphibian (Richards 1982; Tang et al. 2014). Despite their 
potential higher susceptibility to contaminants, due to a lack 
of protective epidermal structures and permeable skin (Wells 
2007), only a handful of studies have been conducted on the 
effects of pollutants on colouration in amphibians (Larra-
mendy 2017; Ujhegyi and Bókony 2020). Agrochemicals are 
mostly sprayed in spring, when many amphibians’ species 
from temperate areas reproduce (Wells 2007; Berger et al. 
2013; Lenhardt et al. 2015), and animals may be exposed to 
these compounds through inhalation, skin permeability, and 
consumption of contaminated food as well as water.

In this study, we investigated skin colour variations and 
UV signalling according to sex and considering different 
body parts (throat, ventral and dorsal areas) in a widespread 
amphibian species, the spiny toad (Bufo spinosus), charac-
terized by an overall dull colouration as compared to other 
brightly coloured anurans (Rudh and Qvarnström 2013). 
We also tested the effects of exposure to two heavily used 
herbicides (glyphosate’s primary metabolite, aminomethyl-
phosphonic acid [AMPA] and Nicosulfuron) to which free-
ranging amphibians are exposed in agricultural areas (Brühl 
et al. 2013; Berger et al. 2013; Lenhardt et al. 2015; Adams 
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et al. 2021). To do so, we captured adults of both sexes in 
Western France out of the breeding period and examined 
their throat, ventral, and dorsal colouration based on spectro-
photometric measures. In amphibians, ventral and throat col-
ours are lighter than the dorsal area and show clear oxyhae-
moglobin absorption peaks (Norris and Lowe 1964). This 
species expresses a strong sexual dimorphism (Speybroeck 
et al. 2018), and sexual dichromatism has been described in 
a closely related species, Bufo bufo, with males being yel-
lower-greener (less red) and brighter than females (Ujhegyi 
and Bókony 2020). We thus expect that colouration will vary 
with sex in Bufo spinosus, and will be related to individual 
traits as an honest signal of quality, as demonstrated in males 
(Martín and López 2009; Heath et al. 2013). In addition, 
given the effects of agrochemicals on gonad function and 
hormone concentrations (McCoy et al. 2008; Trudeau et al. 
2020), we expect that contaminant exposure may as well 
affect individual’s colouration, increasing black melanin pig-
mentation (Lifshitz and St Clair 2016; Goiran et al. 2017), 
reducing carotenoid colouration (Baatrup and Junge 2001; 
Alonso-Alvarez and Galván 2011; Shenoy 2012), and modi-
fying hue and saturation (Larramendy 2017; Ujhegyi and 
Bókony 2020).

Material and methods

Study species

The spiny toad is the largest toad species originating from 
western Europe (Speybroeck et al. 2018). The species repro-
duces in ponds during late winter, but is found migrating 
both for aestivation and hibernation, respectively in spring 
and autumn. Males and females are sexually dimorphic, 
females being larger than males, and males presenting nup-
tial pads on their fingers, allowing them to clasp females 
during reproduction (Speybroeck et al. 2018).

Animal care and housing

Between 21-Sep-2020 and 27-Oct-2020, 81 free-ranging 
spiny toads (32 males and 49 females) were captured by 
hand on the roadside to the south of the Deux-Sèvres depart-
ment (western France) and brought back to the laboratory. 
Toads were housed in a thermally controlled (17 °C) room 
under natural photoperiod (12:12 h cycle), in individual plas-
tic boxes (80 × 40 × 16 cm) lined with paper towels, with a 
shelter (halved PVC tubes) and a petri dish for water. Twice 
a week, in quantities adapted to their size, toads were fed 
crickets, meal worms and earth worms dusted with a mixture 
of CaCO3 and multivitamin powder (Repti Calcium, Zoo 
Med Laboratories, Inc). Once a week, boxes were cleaned 
and paper towels were replaced.

Agrochemical exposure

AMPA (aminomethylphosphonic acid) is the primary 
metabolite of glyphosate, and is one of the main contami-
nants detected in surface waters worldwide (Grandcoin 
et al. 2017). New herbicides molecules are also regularly 
developed, such as Sulfonylurea Herbicides (e.g. Sulfosul-
furon, Rimsulfuron, and Nicosulfuron) which are persistent 
in aquatic environments such as ponds (Cessna et al. 2015). 
We exposed toads either to AMPA or one Sulfonylurea her-
bicide (Nicosulfuron) and started a chronic exposition at 
environmentally relevant concentrations from 15-Apr-2021 
to 01-Jul-2021. Individuals were exposed to one of the three 
treatments: Control (11 males, 20 females), AMPA (10 
males, 17 females), Nicosulfuron (11 males, 12 females). 
The individuals in the three experimental groups did not 
differ in size, either considering males (linear model: Sum 
Sq = 12.352, F-value = 0.745, p-value = 0.484, Control 
males: 58.65 mm ± 2.08 SE, AMPA males: 59.93 mm ± 3.87 
SE, Nicosulfuron males: 59.98 mm ± 2.49 SE) or females 
(linear model: Sum Sq = 231.43, F-value = 1.703, 
p-value = 0.193, Control females: 72.81 mm ± 8.33 SE, 
AMPA females: 73.81 mm ± 8.66 SE, Nicosulfuron females: 
78.22 mm ± 7.43 SE). AMPA was administered by dissolu-
tion in drinking water (dechlorinated tap water) at 4 µg L−1 
(crystalline powders, 99% purity, ACROS ORGANICS™), 
and Nicosulfuron was administered by dissolution in drink-
ing water (dechlorinated tap water) at 1 µg L−1 (crystalline 
powders, 99% purity, ACROS ORGANICS™). These con-
centrations correspond to the concentrations of these pollut-
ants found in agricultural environments (Tartu et al. 2022, 
and data from Agence de l′Eau Loire-Bretagne). Concentra-
tions measured in 4 samples of drinking water per treatment 
validated that the actual concentrations were close to the 
nominal concentrations (Qualyse lab, La Rochelle, France). 
Toads were exposed to their treatment through drinking 
water (petri dish) twice a week.

Colouration and morphometrics

On 01-Jul-2021, after a two-and-a-half-month exposure, we 
obtained reflectance spectra from the throat, the ventral, and 
the dorsal area of each individual (two replicates; reflectance 
spectrums are given in Appendix A). These measurements 
were done using a USB-2000 spectrophotometer (Badiane 
et al. 2020; Kawamoto et al. 2021). The probe was hand-held 
over each area, approximately perpendicular to the patch 
surface. We then processed spectral data in R v.4.0.5 (R Core 
Team 2019) using the package pavo (Maia et al. 2013). We 
cropped each spectrum between 300 and 700 nm, smoothed 
them using a loess smooth span of 0.2, and averaged the 
two replicates recorded for each body region. For each body 
part we extracted hue, UV-saturation, UV-luminance, total 
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brightness (B1 300–700). We then calculated yellow-orange 
saturation (B1 575–700/B1 300–700), violet-blue satura-
tion (B1 400–515/B1 300–700) and green saturation (B1 
495–570/B1 300–700) (Badiane et al. 2020). All individuals 
were weighed (electronic balance: ± 0.1 g) and their snout-
vent length (SVL) was measured with an electronic calliper 
(± 0.01 mm) on the same day. We then calculated a body 
condition index using residual scores from the linear regres-
sion between log (body size) and log (body mass).At the end 
of the experiment, individuals were all released at their site 
of capture.

Statistical analyses

First, we ran a principal component analysis (PCA) on the 
different fractions of reflectance with the ade4 package 
(Dray and Dufour 2007). We generated principal compo-
nents (PCs) for further analyses from the first and second 
axis of the PCA (projected inertia > 70%) that we used as 
a global index of colouration. Correlations between these 
PCs and the different fractions of reflectance included in the 
PCA are presented in Appendix B. Second, we used linear 
models (LMs) to test 1) the effects of sex and 2) the effects 
of body condition on reflectance (PC 1 and PC 2 for each 
body part). Sex, body condition and their interaction were 
defined as explanatory variables and reflectance PC1 and 
PC2 for each body part as response variables. We tested 
these relationships in control individuals only, to test for 
this effect without the effect of contaminant exposure. Third, 
we tested the effects of the treatment (Control, AMPA, or 
Nicosulfuron) on reflectance (PC 1 and PC 2 for each body 
part) in each sex separately, as PC1 and PC2 values were 
highly different between males and females (LM models: 
all p-values < 0.029, except for the comparisons in PCA 2 
throat coloration between sexes [p-value = 0.159], see also 
Fig. 1). Finally, we tested the effects of body condition, sex 
and their interaction on reflectance in AMPA and Nicosulfu-
ron exposed individuals only. These variables were selected 
by backward stepwise selection, and only the last retained 
variables are presented in the final models. All analyses were 
performed with R v.4.0.5 (R Core Team 2019).

Results

Reflectance sexual dimorphism in control 
individuals

In control individuals, we observed a significant sex-
ual dichromatism in reflectance of different body parts 
(Fig. 1, Table 1). Females reflected in the UV spectrum 
whereas males rather reflected in the yellow-orange and 
green spectra (Fig. 1). Ventral PC1 varied according to 

Fig. 1   Ordination plot from reflectance principal component analy-
sis (PCA) scores grouped by sex in non-exposed spiny toads Bufo 
spinosus, for a throat reflectance, b ventral reflectance and c dorsal 
reflectance. PC1 and PC2 values show the contribution of the axes to 
the total variation. Each dot represents an individual. Individuals with 
similar reflectance (PCA scores) are near each other and individuals 
with dissimilar reflectance are farther from each other. Circles repre-
sent females and triangles represent males. The circle and triangle at 
the center of each ellipse represent the centroid of PCA scores for that 
group
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sex (being higher in males than females, 0.950 ± 0.301, 
p = 0.004, values are LM estimates ± standard error), 
body condition (− 3.639 ± 1.270, p = 0.008), and their 
interaction (6.237 ± 2.729, p = 0.030). Indeed, body 
condition was negatively related with ventral PC1 in 
females (− 3.64 ± 1.27, p = 0.008, values are Linear Mod-
els estimates ± standard error, Fig. 2), but not in males 
(1.53 ± 1.46, p = 0.302, Fig. 2), and body condition did 

not correlate with the reflectance of other body parts 
(p > 0.157 for all tests).

Effect of agrochemical exposure on reflectance 
and body condition

Nicosulfuron treatment decreased the hue of throat reflec-
tance in females, whereas AMPA increased yellow-orange 
saturation of the throat in males (Table 2, Fig. 3A). In 
females, AMPA had a slight effect on ventral and dor-
sal reflectance, with a marginally higher ventral hue and 
increased yellow-orange dorsal saturation (Table 2, Fig. 3A). 
When testing the effects of body condition on reflectance in 
the exposed groups (AMPA and Nicosulfuron exposed indi-
viduals), we observed no relationship between body condi-
tion and reflectance for any body part, only the effect of sex 
is found significant (Appendix C).

Discussion

In this study, we highlighted a strong sexual dichromatism 
in spiny toads. Unexpectedly, the throat and ventral areas 
of females reflected more in the UV spectrum than those 
of males, suggesting these body parts might be critical in 
intra-specific signalling. In contrast, the throats and ven-
tral areas of males were rather yellow-orange, with low UV 
reflectance. The dorsal area spectrum of females was domi-
nated by yellow-orange, whereas that of males by green. 
Importantly, females with higher UV reflectance (ventral 
area only) were in better body condition. Moreover, throat 
colouration of both females and males was influenced by 
agrochemicals. The throats of AMPA-exposed males were 
more saturated in yellow-orange than that of control males, 
and Nicosulfuron exposure decreased the reflectance hue of 
the throat in females. We also observed a marginal decrease 
in the hue of the ventral area of AMPA-exposed females 
and a marginal increase of the yellow–orange colour of their 
back.

Although sexual dichromatism is not the most prevalent 
secondary sexual trait in amphibians (Bell and Zamudio 
2012; Bell et al. 2017), adult males of several species are 
more brightly coloured than adult females (Bell and Zamu-
dio 2012), this being considered as a visual signal facilitat-
ing gender recognition, enhanced by striking postures that 
highlight specific body parts (Sztatecsny et al. 2010). In Bufo 
bufo for instance, males are yellower-greener and brighter 
than females (Ujhegyi and Bókony 2020). Sexual dichro-
matism with colouration conspicuousness biased toward 
males is common among most vertebrates (Lifshitz and St 
Clair 2016), but some species of anurans display female-
biased colouration conspicuousness, in which females 
undergo colour transformation, often resulting in more 

Table 1   Relationships between reflectance PCA scores and sex in 
spiny toads (Bufo spinosus)

Values are estimates obtained from linear regressions with female 
as a reference level. PC scores were obtained from a PCA including 
hue, UV-saturation, UV-luminance, total brightness (B1 300–700), 
yellow-orange saturation, violet-blue saturation, and green saturation. 
The variables that correlated the most with axis 1 (PCA 1) and axis 2 
(PCA 2) are identifiable in Fig. 1 and Appendix B. Achromatic com-
ponents (UV, luminance) are mainly correlated with PCA 1, while 
chromatic components (e.g. hue) are mostly correlated with PCA 2. 
Values in bold are significant at α = 0.05

Response variables Explanatory 
variable

Estimate ± SE p value

Throat reflectance
PCA 1 Sex 0.61 ± 0.28 0.036
PCA 2 Sex − 0.41 ± 0.29 0.174
Ventral reflectance
PCA 1 Sex 1.11 ± 0.33 0.002
PCA 2 Sex − 0.18 ± 0.29 0.539
Dorsal reflectance
PCA 1 Sex 0.69 ± 0.38 0.082
PCA 2 Sex 1.05 ± 0.3 0.002

Fig. 2   Relationship between ventral reflectance and body condition 
index in male and female spiny toads Bufo spinosus. More nega-
tive values on the PC1 axis represent stronger reflectance in the UV. 
Females and males are represented by turquoise and orange dots, 
respectively. The full line represents a significant relationship, the 
dashed line a non-significant relationship
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ornate colourations (Portik et al. 2019). To our knowledge, 
our study is the first to report a female-biased UV reflectance 
in amphibians, where females expressed throat and ventral 
reflection in the UV spectrum, while males did not.

UV reflectance has already been shown in males of many 
species. Diverse taxa possess retinal photopigments that 
allow UV vision (Jacobs 1992), and UV sensitivity has been 
suggested to be useful in making crucial visual discrimina-
tions, for example allowing to highlight targets against their 
background and thus aid in their detection (Jacobs 1992). As 
such, UV colouration in males has been shown to be used in 
mate choice in birds (Prum 2006), but also in lizards (Pérez i 
de Lanuza and Font 2007; Bajer et al. 2010) and amphibians 
(Secondi et al. 2012), the UV reflection allowing to increase 
sexual dichromatism and male conspicuousness (Pérez i de 
Lanuza and Font 2007). Here, we highlighted intense UV 
reflection in female spiny toads, suggesting either that mate 
choice can also be performed by males, as it has been found 
in many species (Clutton-Brock 2009), or that it allows 
males to detect the presence of females once they arrive in 
the breeding site. As explosive breeders, spiny toad males 
gather in very large numbers in the breeding ponds days to 
weeks before the arrival of females, and often place them-
selves either at the bottom of the pond or close to the shore 
below the water surface. In both cases they would spot the 
females from below. The strong ventral and throat UV reflec-
tance of females could allow them to be easily discriminated 

from the background and allow males to visually distinguish 
them from other males. These two hypotheses need to be 
tested.

The mate choice hypotheses can be strengthened by the 
fact that colouration is often an honest signal of individuals’ 
quality and ability to reproduce (Baatrup and Junge 2001; 
Clutton-Brock 2009; Shenoy 2012; Blévin et al. 2014). In 
birds, UV colouration is already known to reflect individual 
condition and quality (Prum 2006), and to be related to age, 
sex, and morphology in lizards (Martin et al. 2013). In our 
study, we show that females with higher UV reflectance 
were in better body condition, which is consistent with an 
honest signal of quality in female spiny toads. The relation-
ship between colouration and quality is common in various 
species, as only individuals in good condition can afford 
to allocate pigments for trait colouration without compro-
mising other functions (Hamilton and Zuk 1982). UV col-
ouration might be costly to produce (Senar 2006), and its 
production could be traded off with many other functions. 
Colouration can be influenced by immunocompetence and 
parasite load (Molnár et al. 2012; Olsson et al. 2013), tes-
tosterone levels (Cox et al. 2005, 2008), and oxidative stress 
(Simons et al. 2012), which could all be influenced by expo-
sure to agrochemicals (Mann et al. 2009; Brandt et al. 2016; 
Cheron et al. 2022). Our results thus suggest that UV colour 
could be an important female-condition signal for males in 
amphibians. To understand the underlying mechanisms, we 

Table 2   Relationships between 
reflectance PCA scores and 
pesticide exposure according 
to sex in spiny toads (Bufo 
spinosus)

Values are estimates obtained from linear regressions with control as a reference level. PC scores were 
obtained from a PCA including hue, UV-saturation, UV-luminance, total brightness (B1 300–700), yellow-
orange saturation, violet-blue saturation, and green saturation. The variables that correlated the most with 
axis 1 (PCA 1) and axis 2 (PCA 2) are identifiable in Fig. 2 and Appendix B. Achromatic components (UV, 
luminance) are mainly correlated with PCA 1, while chromatic components (e.g. hue) are mostly correlated 
with PCA 2. Values in bold are significant at α = 0.05. •Represents relationships close to statistical signifi-
cance (p < 0.10)

Response 
variables

Explanatory variables Females Males

Estimate ± SE p value Estimate ± SE p value

Throat reflectance
PCA 1 AMPA − 0.09 ± 0.26 0.724 0.84 ± 0.38 0.036

Nicosulfuron − 0.23 ± 0.29 0.432 0.58 ± 0.37 0.132
PCA 2 AMPA − 0.33 ± 0.28 0.246 − 0.58 ± 0.5 0.257

Nicosulfuron − 0.92 ± 0.31 0.004 − 0.2 ± 0.49 0.680
Ventral reflectance
PCA 1 AMPA − 0.38 ± 0.2 0.699 − 0.07 ± 0.38 0.850

Nicosulfuron − 0.12 ± 0.3 0.789 − 0.28 ± 0.37 0.459
PCA 2 AMPA 0.56 ± 0.33 0.093• − 0.23 ± 0.43 0.605

Nicosulfuron 0.14 ± 0.36 0.692 − 0.03 ± 0.42 0.950
Dorsal reflectance
PCA 1 AMPA 0.73 ± 0.37 0.055• 0.19 ± 0.26 0.474

Nicosulfuron − 0.15 ± 0.41 0.712 0.03 ± 0.26 0.913
PCA 2 AMPA − 0.14 ± 0.27 0.608 − 0.21 ± 0.32 0.530

Nicosulfuron − 0.2 ± 0.3 0.510 0.53 ± 0.32 0.103
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should further investigate if UV colouration in this species 
is linked to immunity or hormone levels (such as oestrogen), 
and additionally to fecundity or investment in reproduction, 
as it has been shown in lizards (Kopena et al. 2020).

We were here able to show that spiny toads are sexu-
ally dichromatic, and this dichromatism can be affected by 

agrochemicals. Numerous agrochemicals have enzyme- and 
endocrine-disrupting capabilities (Colborn et al. 1993; Khan 
and Law 2005; Lifshitz and St Clair 2016), which could lead 
to alterations of gonadal form and function (McCoy et al. 
2008). As colouration is linked to hormone expression (Rich-
ards 1982; Rand 1992; Tang et al. 2014) and reproductive 

Fig. 3   Ordination plot from 
reflectance principal component 
analysis (PCA) scores grouped 
by sex and agrochemical 
treatment in spiny toads Bufo 
spinosus, for a throat reflec-
tance, b ventral reflectance and 
c dorsal reflectance. PC1 and 
PC2 values show the contribu-
tion of the axes to the total 
variation. Each combination of 
sex and treatment is represented 
by a different symbol. Each 
dot represents an individual. 
In each sex, individuals were 
exposed either to tap water 
(control, FC = female control, 
MC = male control), Nicosulfu-
ron (FN = female Nicosulfuron, 
MN = Male Nicosulfuron) or 
AMPA (FA = female AMPA, 
MA = male AMPA). The sym-
bol at the centre of each ellipse 
represents the centroid of PCA 
scores for that group
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abilities (Clutton-Brock 2009; Kopena et al. 2020), it is also 
likely to be disrupted by agrochemicals. Pigments involved 
in trait colouration, such as melanin, may be physiologi-
cally costly to produce (Jawor and Breitwisch 2003), and 
could be traded off with the costs of agrochemical exposure 
(e.g. reduced growth and increased susceptibility to disease 
(Baker et al. 2013). Additionally, agrochemicals, including 
AMPA, can cause damage to organisms by producing free 
radicals that overwhelm the antioxidant system (Galván and 
Alonso-Alvarez 2009; Cheron et al. 2022). Thus, pigments 
may rather be allocated to immune- or antioxidant-system 
(detoxification mechanisms, (McGraw 2005)), rather than 
to ornamentation in exposed individuals (Faivre et al. 2003; 
Arellano-Aguilar and Macías Garcia 2008; Lifshitz and St 
Clair 2016). Exposure to agrochemicals and other pollutants 
results in reduced carotenoid colouration (Baatrup and Junge 
2001; Alonso-Alvarez and Galván 2011; Shenoy 2012; Lif-
shitz and St Clair 2016), probably because of the alloca-
tion of dietary carotenoids to counteract oxidative stress 
(Arellano-Aguilar and Macías Garcia 2008), and also to a 
decrease in the expression of brown melanin and an increase 
in black melanin (Lifshitz and St Clair 2016).

Interestingly, we show that, in AMPA-exposed males, 
throat yellow-orange colouration was more vivid than that 
of control males, probably indicating higher levels of carot-
enoids (Blount and McGraw 2008). This was unexpected 
given previous evidence that agrochemicals lead to reduced 
carotenoid colouration (Baatrup and Junge 2001; Alonso-
Alvarez and Galván 2011; Shenoy 2012; Lifshitz and St 
Clair 2016). This effect either suggests that (1) AMPA con-
centrations used in our study were too low to induce oxida-
tive damages in adults, or (2) males are not able to mobilize 
carotenoids to counteract oxidative stress [because carot-
enoids may have low antioxidant effects as shown in other 
species (Costantini and Møller 2008)]. These two hypoth-
eses need to be untangled by evaluating oxidative stress 
concomitantly with colouration. One additional hypothesis 
could be that the observed pattern results from endocrine 
disruption. In vitro and in vivo studies have shown that 
glyphosate-based herbicides and AMPA exhibit estrogen-
like properties in various taxa (Uren Webster et al. 2014; 
Jarrell et al. 2020; Milesi et al. 2021). In zebra fish (Danio 
rerio) for instance, exposure to glyphosate-based herbicide 
increases the expression of ovarian aromatase, an enzyme 
which catalyses the conversion of testosterone to estradiol in 
the gonads of females (Uren Webster et al. 2014). Estradiol 
exposition in male African clawed frogs Xenopus laevis led 
to sub-cellular events indicative of disrupted testicular devel-
opment and decreased testosterone concentrations (Hecker 
et al. 2005). Consequently, AMPA exposure could decrease 
testosterone concentrations in male toads through estrogenic 
effects. Because a trade-off exists between testosterone and 
immunity (Peters 2007; Schroderus et al. 2010), if AMPA is 

related to lower testosterone concentrations, polluted males 
could afford mobilizing enough carotenoids to counteract 
oxidative stress and in parallel display a more yellow-orange 
throat colour. Estradiol, in addition to testosterone levels, 
need to be further assessed in exposed individuals to test for 
this last hypothesis and understand these variations.

AMPA and Nicosulfuron were also shown to respectively 
increase ventral and decrease throat hue in females. Hue 
represents the colour shade and is produced by a combina-
tion of dermal chromatophores, epidermal melanocytes, and 
epidermal diffraction gratings (McNamara et al. 2016). In 
toads, throat hue positively correlates with age, body mass 
and body size, and thus represents an honest signal of con-
dition and age (Zamora-Camacho and Comas 2019). As all 
experimental groups were balanced in size, this suggests 
that exposed females have lost this honest signal. Addition-
ally, older toads are darker (Zamora-Camacho and Comas 
2019). In this study, we did not evaluate individual’s age, 
which could have been done via skeletochronology. Since 
age correlates with size in amphibians (Shine 1979), even 
with some variance (Olsson and Shine 1996; Moreno-Rueda 
et al. 2021), we hypothesized that age-class might be similar 
between treatments. This suggests Nicosulfuron, and to a 
lesser extent AMPA, exposure could mimic or accelerate 
integument aging in exposed females, probably linked to 
telomere attrition, which might be a cost for maintaining 
colouration (Giraudeau et al. 2016). Telomere length should 
be analysed to test this hypothesis. Lastly, in another toad 
species, hue has been shown to decrease in intersex individu-
als (individuals with mixed-sex gonads or gonadal abnor-
malities; Ujhegyi and Bókony 2020), which effect is often 
found in response to herbicide (Howe et al. 2004; Lanctôt 
et al. 2014; Ujhegyi and Bókony 2020). This could indi-
cate that Nicosulfuron has caused gonadal abnormalities in 
females, which effect might also be found with the exposi-
tion to AMPA, leading to a masculinisation of their dorsal 
reflectance (more saturated in yellow–orange in comparison 
to control females). Interestingly, the effect of body condi-
tion on UV reflectance was only found in control females 
and disappeared when considering exposed females. This 
suggests that in female spiny toads, agrochemicals could 
fade the honest signal carried by UV reflectance. Our results 
highlight sex-dependent responses of spiny toads to envi-
ronmentally-relevant agrochemical exposure. By influencing 
mate attractiveness, these sex-dependent effects are likely to 
lead to reduced reproductive abilities and breeding success 
(Shenoy 2012; Ujhegyi and Bókony 2020; Yang et al. 2021).

Conclusion

We here provide the first evidence of UV reflectance in 
female spiny toads as a significant honest signal of quality 
for their mates. To go further, we would need to investigate 
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whether male choice toward females does depend on UV 
colouration, and if this feature correlates with increased 
fecundity or investment in reproduction. Additionally, we 
highlighted that AMPA and Nicosulfuron exposure affected 
throat colouration in males and females, but in a sex-depend-
ent manner, which can bear consequences on mate attractive-
ness, and thus individuals’ fitness in agricultural landscapes. 
Further investigations need to be conducted to better under-
stand the underlying mechanisms disrupted by agrochemical 
exposure.
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