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Abstract

When captured, many prey respond by biting the predator or struggling to get free.
However, one indirect escape option is death feigning (DF), in which complete
immobility supposedly “tricks” the predator into abandoning its meal. But lying
motionless and exposed to a predator is dangerous; therefore, individuals should
optimize DF occurrence and duration. We captured colour polymorphic dice snakes
(Natrix tessellata, Natricidae) (N = 271) in the field and measured two behavioural
responses: (1) the occurrence and duration of immobility/DF; (2) the number of
tongue-flicking sequences (TF). Tongue flicking is an essential component of a key
sensory mechanism to check the safety of the environment before attempting
escape. We experimentally assessed the relationship between these two behaviours
and the effects of phenotypic characteristic of snakes on the occurrence and dura-
tion of immobility and of TF. Snake phenotype had multiple effects. Gravid
females avoided DF and displayed more TF sequences during the tests compared
to non-gravid females and males. Blotched snakes stayed immobile longer than
green and melanistic snakes. Larger individuals remained in DF for longer and
showed fewer TF sequences than smaller individuals. Snakes burdened with a
recent meal postponed fleeing and displayed more TF sequences than snakes with-
out food. Finally, snakes showing more TF sequences postponed fleeing, which
suggests that dice snakes assessed predatory risks and adapted escape behaviour to
their risk status. Future studies should examine how individuals estimate the appro-
priate timing to shift from immobility to escape.

Introduction

Predators impose strong selective forces on their prey, promot-
ing adaptations such as aposematic and cryptic colouration
(Gittleman et al., 1980; Ruxton et al., 2019), chemical defence
(Greene, 1988), and various defensive behaviours (Sih
et al., 2004). Antipredator attributes and behavioural responses
can function in isolation or in conjunction, sometimes generat-
ing extensive defensive repertoires (Kikuchi et al., 2023;
Moore & Williams, 1990). Complex and multi-stage antipreda-
tor behaviours allow individuals to assess predatory threat and
to adjust their antipredator response during an interaction (Bar-
shaw et al., 2003; Hemmi & Pfeil, 2010). During a given anti-
predator sequence, each behavioural shift presumably
corresponds to the most appropriate response available, given
the particular circumstances (Bowers et al., 1993). In many
species, an elevated predatory risk triggers fleeing, deterring,
or bluffing behaviours (Cloudsley-Thompson, 1995; Kazandjian

et al., 2021). However, deterrence and bluffing may not always
halt a predator’s attack, and various post-capture defences,
such as struggling and biting, can be brought into play if the
prey winds up in the grip of the predator (Cooper & Blum-
stein, 2015; Gregory, 2016; Horv�ath et al., 2020). In strong
contrast to active defensive behaviours, some animals display
strikingly passive behaviours when caught. One good example
is death feigning (DF, i.e. thanatosis), in which the prey
remains immobile, often exposing its vulnerable body parts to
the predator (Humphreys & Ruxton, 2018). Feigning death is
an intricate display, varying among taxa, but not always easy
to distinguish from other types of immobility induced by pred-
ators (e.g., specific freezing posture of insects that mechani-
cally hampers swallowing via folded-up legs; Honma
et al., 2006). Perhaps the most elaborate death-feigning dis-
plays are seen in snakes, which may flip onto their backs, gape
their mouths, and discharge foul smelling fluids (reviewed by
Fuentes Magall�on et al., 2021). In any case, immobility is
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crucial. The absence of movement supposedly “tricks” the
predator into “thinking” it has successfully killed its prey, after
which the predator stops attacking the prey or even mistakenly
caches it for later consumption (Sargeant & Eberhardt, 1975;
Thompson et al., 1981). Similarly, resembling a corpse prey
might exploit the predator’s aversion towards dead prey (Skel-
horn, 2018), all of which grants the prey potential chances to
escape. Such passive tactics seem extremely risky; however,
the fact that they have evolved repeatedly in animals suggests
that they are effective (Humphreys & Ruxton, 2018), but how
selective forces may favour immobility and DF is not yet fully
understood (Gregory et al., 2007; Humphreys & Ruxton, 2018;
Miyatake et al., 2004).
During a DF display, the prey should remain alert until

escape is possible (Arduino & Gould, 1984; Hugie, 2003;
Lima & Dill, 1990). The decision to flee or remain immobile
should maximize the probability of survival; thus, it is crucial
for the prey to select the right moment to escape as trying to
escape too early may re-attract the unwanted attention of the
predator (Sih, 1997; Ydenberg & Dill, 1986). Such a fine-
tuned decision is presumably based on information gained
through various sensory channels. Visual clues should be
important but might be limited in a motionless individual lying
supine on the ground. In such cases, other sensory information,
such as chemosensory information, might play an essential role
in estimating risks involved with escape (Elvidge &
Brown, 2014; Kats & Dill, 1998; Punzo, 2007). The vomero-
nasal organs comprise the key chemosensory organ in squa-
mate reptiles; these organs process information from volatile
and non-volatile molecules from the air or substrate relayed to
them through tongue flicking (TF; Daghfous et al., 2012; Filor-
amo & Schwenk, 2009; Shine & Mason, 2012). As a sensory
behaviour that is directly involved in information gathering
and transfer, TF can play a crucial role in risk assessment.
In this study, we focused on the occurrence and duration of

immobility and DF as metrics of a snake’s decision to shift
from active to passive antipredator behaviour before shifting
again to active escape. We performed our experiments immedi-
ately after capturing snakes in the field while simulating han-
dling by a “predator”, thus imitating a real encounter as much
as possible. We studied a dense population of colour-
polymorphic dice snakes, which enabled us to obtain a large
sample and explore the effects of colour morph, sex, body
size, reproductive status, feeding status, cloacal temperature,
scars, and injuries (a proxy of past predation experience) on
the incidence and duration of death-feigning behaviour. Specifi-
cally, the variation in the dorsal pattern could play a notewor-
thy role in antipredator displays. For instance, snakes with
blotched patterns exhibit a greater propensity for pre-capture
immobility, whereas uniformly coloured snakes tend to rely on
flight when confronted by predators (Allen et al., 2013; Jack-
son et al., 1976). The assumption is that the blotched pattern
offers reference points that aid the predator in the visual track-
ing of the snake’s movements. In the Golem Grad population,
it is anticipated that all colour morphs will exhibit comparable
defensive behaviours, as indicated by Golubovi�c et al. (2021),
although this study only considered capture behaviours.
According to the results of Golubovi�c et al. (2021), larger dice

snakes are expected to display DF more often, and gravid
females should decrease DF propensity, although the duration
of immobility and DF was not previously measured or ana-
lysed. To our knowledge, this study is one among very few
studies that consider the sequences and durations of antipreda-
tor behaviour in snakes (along with Burghardt & Greene, 1988;
Durso & Mullin, 2014; Gerald, 2008).
Finally, we considered how the number of tongue flicking

sequences, a unique sensory behaviour in squamates, might
influence the decision of individuals to attempt escape. We
expected tongue flicks to signal a snake’s willingness to
explore options to flee and thus the possible imminence of the
decision to flee or not. Alternatively, TF could indicate a pre-
cautious exploration of the environment and be associated with
a delay in the decision to flee. Either way, by increasing the
amount of the information gathered, individuals should be bet-
ter able to assess the risk they run by choosing to flee (Dagh-
fous et al., 2012; Kats & Dill, 1998; Lima & Dill, 1990).

Materials and methods

Study species

The dice snake (Natrix tessellata) is a non-venomous ovipa-
rous colubrid snake with an extensive geographic range
(Mebert, 2011; Mebert et al., 2013). This semi-aquatic piscivo-
rous species frequently occurs in large and dense populations
(Ajti�c et al., 2013; Carlsson et al., 2011; Gruschwitz
et al., 1999). Additionally, dice snakes are prey to a great
diversity of predators (Hierophis gemonensis, Jeli�c &
Lau�s, 2011a; Larus cachinnans, Jeli�c & Lau�s, 2011b; Accipi-
tridae, Ardeidae, Corvidae, Lutra lutra, Ajti�c et al., 2013).
Dice snakes are sexually dimorphic, with males being smaller
and reaching maturity at a smaller size than females. When
seized by a human, dice snakes display a variety of antipreda-
tor behaviours. Like other natricine snakes, they usually start
with a vigorous struggle to get free. If unsuccessful, they may
rapidly discharge foul-smelling cloacal secretions mixed with
faeces and urine, regurgitate recently ingested prey, or bluff an
aggressive display by flattening their head while hissing and
making sham strikes (Golubovi�c et al., 2021). DF is usually
considered to be a last resort behaviour; individuals that dis-
play DF exhibit a decreased stress response (lower levels of
corticosterone) compared to non-displaying individuals
(Laku�si�c et al., 2020). Such physiological bases of DF suggest
that it is not randomly expressed.

Study population

We explored antipredator behaviour in an extremely dense dice
snake population (~10 000 individuals; Ajti�c et al., 2013). The
population inhabits Golem Grad Island (N 40°520080 0, E
20°590230 0; ~18 ha; 850 m asl), located in the North Macedo-
nian part of Lake Prespa and is a strictly protected area within
the National Park “Gali�cica.” In this locality, dice snakes occur
in three different colour morphs. Olive green snakes with black
dots that make a blotched dorsal pattern characterize the most
common morph (blotched morph). The two other morphs, the
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uniformly olive green snakes and the melanistic morph, are
also represented by a large number of individuals (Ajti�c
et al., 2013). Because neonates, juveniles, and adults are prob-
ably exposed to different predators (due to the massive differ-
ences in body size and body mass among age classes; Ajti�c
et al., 2013), we limited investigations of antipredator behav-
iour to adult snakes. To determine size thresholds of sexually
mature individuals, we used a dataset containing over 6000
measured and marked Golem Grad dice snakes. Snout-to-vent
length (SVL) of the smallest male found in copulation was
≥55 cm, whereas the SVL of the smallest gravid female in this
population was ≥63 cm (Ajti�c et al., 2013). Several species of
predators that prey on dice snakes (Vipera ammodytes, Bubo
bubo, Ardea cinerea, Corvus monedula, Larus sp., Lutra lutra;
Ajti�c et al., 2013) inhabit the island. Intense avian predation
on the island is presumed to be responsible for the rather high
occurrence of immobility and DF in this population (Bjelica
et al., 2023; Golubovi�c et al., 2021).

Field procedures

We searched for dice snakes in the open or sheltered under natu-
ral cover and quickly captured them by hand, mimicking success-
ful predations, which was followed by a series of generalized
predator-like actions to test for post-capture antipredator
responses in the field. We assume that, although humans were
proxies for natural predators (an issue previously addressed by
Gregory, 2016), the same general principles apply to natural
encounters between snakes and their predators. The predator-like
handling procedure involved a 30-s handling sequence. Each
snake was first held for 10 s with both hands, and two fingers
were used to pinch the body at two fixed points, behind the head
and above the cloacal region, to standardize the handling as much
as possible. Then, the snake was passed from one hand to the
other for 10 s and finally slightly stretched for 10 s to imitate a
generalist predator handling its prey. The snake was then placed
on its back, and the person handling the snake (VB) stepped out
of view of the snake, mimicking predator hesitation or latency to
eat the prey. Another observer (MM) remained motionless at 1 m
(crouching) to record the snake’s behaviours. From the moment
when the snake was put on its back (i.e., start of the post-capture
test), we recorded measurements of the following sequence of
variables:

Occurrence of immobility: If the snake remained entirely
immobile for a measurable period (≥1 s), we considered
this a display of immobility.
Duration of immobility: This measurement includes DF
and is defined as the time elapsed from the start of immo-
bility until the snake makes its first visible head movement
(Fig. 1). We assumed that this timing corresponds to the
moment the snake starts actively surveying its surroundings,
likely visually assessing the opportunity to escape. Follow-
ing their first visible movement, all snakes fled rapidly, but
with a variable delay.
Occurrence of death feigning (DF): If the snake had an
open mouth and a protruding tongue during immobility, we

considered it as DF, a more intensive display than immobil-
ity alone (Gregory, 2008).
Duration of death feigning: Defined as the time elapsed
from the onset of DF until the snake closed its mouth (i.e.,
end of DF). TF never occurred during DF.
Decision to escape: Time elapsed from the end of immobil-
ity until a clear escape attempt was recorded, with the
snake either starting to move slowly or rapidly darting
away.
Tongue flicking: Tongue flicking rate is an important vari-
able commonly used in behavioural tests (Baeckens
et al., 2017; Punzo, 2007). However, since accurately
counting the exact number of tongue flicks was impossible
from a distance of 1 m, we recorded the number of tongue
flicking events during the tests. TF during post-capture
immobility usually starts after several seconds of complete
immobility or after DF. Individuals rapidly flick their ton-
gue for less than a second, stop and retract their tongue,
and such tongue flicking sequences were easily counted
(TFseq). An overview of the different phases and parameters
we measured is given in Fig. 1.
All tests were timed using a digital stopwatch (�0.1 s). We

limited the tests to 5 min per snake since only six of the 271
snakes tested (~2%) remained immobile for longer than 5 min.
These six individuals were included when examining the
occurrence of DF and immobility but were excluded from the
analysis of the duration of these behaviours. After the comple-
tion of behavioural tests, we recorded colour morph, sex, body
size (SVL, snout-to-vent length), the presence of scars, and
injuries and measured the cloacal temperature using a probe
thermometer. Visible bite and claw marks were considered
indicative of past confrontations with predators (Bonnet
et al., 2010; Gregory & Isaac, 2005), while their size and num-
ber were not further coded. Furthermore, we only tested snakes
that appeared to be in good condition, i.e., snakes that did not
have debilitating injuries. We also palpated the abdomen of
each snake to determine its feeding status (presence/absence of
prey in the gut) and, if female, its reproductive status (gravid
or not). By using ventral scale notching with scissors, each
snake was given a long-term and unique mark for later identi-
fication and released at the capture site. Each individual was
represented only once in the analyses, and recaptures from the
ongoing capture–mark–recapture studies were not included.

TFseq

DecisionImmobilityHandling Escape

DF

TFstart TFend

Figure 1 Different phases that we timed and measured during the

course of the DF test. Dice snakes sometimes displayed DF during

predator-like handling, but was not measured in this phase. TF

sequences were counted during immobility and after DF, until a clear

escape attempt was made.
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Statistical analyses

To model the factors that influenced the occurrence and dura-
tion of post-capture immobility and DF, as well as the number
of TF sequences, we used generalized linear models (GLM).
For our set of predictors, we considered the additive effects of
colour morph (blotched, green and melanistic snakes), sex and
reproductive status (male, nongravid female, and gravid
female), presence of food (yes/no), presence of injuries (yes/
no), snout-to-vent length (SVL; continuous variable), cloacal
temperature (continuous variable), and TFseq (discrete variable).
We used binomial GLMs to model the occurrence of each spe-
cific phase of the tests (DF, Immobility; no – 0 s/yes ≥1 s),
Gaussian and gamma GLMs to model the duration of DF,
immobility, and the decision phase and Poisson GLM to model
the number of TF sequences.
We used a stepwise regression with the backward model

selection procedure, starting with a model that included all
explanatory variables and dropping the terms that caused an
increase in Akaike Information Criterion (AIC) values (Craw-
ley, 2013; Zuur et al., 2009). With similar competing models
(DAIC ≤2), we chose the model with the fewest parameters.
With multilevel categorical variables, we performed Wald Chi-
Squared tests to determine if the association of the predictor
and response variable was significant. We then plotted the
effects of significant variables from the best-fit models using
the sjPlot package (L€udecke, 2022). Statistical analyses were
done using R (R Core Team, 2023) and the MASS (Venables
& Ripley, 2002) package. Summaries of the best-fit models
(odds ratios, coefficients, standard errors, and P values) are
available in the Tables S1 and S2.

Results

A breakdown of the dice snakes that displayed immobility (I)
and death feigning (DF) is presented in Table 1.

Immobility

The occurrence of immobility was high (~65%, 175 out of 271
tested snakes). It was non-significantly associated with the
presence of injuries. The duration of immobility was influenced
by morph (P = 0.008). Blotched snakes remained immobile
longer compared to uniformly green and melanistic snakes,

while these two morphs showed a similar duration of
immobility.

Death feigning

One-third of the snakes displayed DF (~34%, 92 out of 271
individuals). We found significant effects of sex and reproduc-
tive status on the occurrence of DF (P = 0.030). Nongravid
females displayed DF more often than gravid females, while
gravid females displayed DF more often than males. The dura-
tion of DF was positively associated with SVL (P = 0.043).
Larger snakes remained in DF for longer amounts of time.

Decision to escape

The decision to escape was influenced by the presence of food
in the gut (P < 0.001) and by the number of TFseq
(P < 0.001). Individuals with empty stomachs fled sooner than
the snakes that had ingested prey. Higher values of TFseq were
associated with delayed flight (Fig. 2).

Tongue flicking

The number of TFseq was significantly associated with sex and
reproductive status (P < 0.001), SVL (P < 0.001), presence of
food in the gut (P = 0.005), and the occurrence of DF
(P < 0.001). Gravid females had the most TF sequences during
our experiments followed by nongravid females and males,
respectively (Fig. 2). Smaller snakes (lower SVL) had more
TFseq, while the presence of food and the occurrence of DF
had a positive association with TFseq (Fig. 3).

Discussion

When squamates are presented with chemical stimuli related to
a predator, they usually respond by increasing the rate of TF
(Cooper, 1994, 2005; Pianka & Vitt, 2003; Punzo, 2007). This
behaviour allows them to detect the presence of a predator,
subsequently influencing their escape response after capture,
which has been identified as a crucial component in antipreda-
tor behaviour (Brown et al., 2006; Clermont et al., 2017;
Curio, 1975; Lohrey et al., 2009; Sih, 1986; Sih et al., 1998).
By increasing the number of TF sequences, dice snakes effec-
tively gather more information from their surroundings and
presumably more accurately assess the risks involved when try-
ing to escape. Our results indicate that the more vulnerable
categories of snakes, such as smaller individuals and those bur-
dened by growing follicles (or eggs) or a recent meal, explored
their surroundings more intensively, showing a greater number
of TF sequences prior to breaking immobility and trying to
escape (Figs 2 and 3). Accordingly, snakes that showed more
TF sequences postponed fleeing. Our results indicate a com-
plex relationship between passive antipredator behaviours (DF
and immobility) and the risk assessment mediated by TF.
An animal’s decision of when to start moving is presumably

based on the information gained through a wide array of sen-
sory systems (Kats & Dill, 1998; Punzo, 2007) until,

Table 1 Breakdown of dice snake data set by sex and colour morph

Colour

morph

Males

Non-gravid

females Gravid females

N

I

(%)

DF

(%) N

I

(%)

DF

(%) N

I

(%)

DF

(%)

Blotched 34 67.6 23.5 27 59.2 40.7 36 63.9 30.5

Green 28 57.1 21.4 30 66.7 40 26 65.4 23.1

Melanistic 32 71.9 40.6 30 50 40 29 75.9 44.8

Sample size (N ) of tested individuals and percentages of snakes that

exhibited immobility (I) or death feigning (DF) are provided.
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eventually, the animal chooses, based on updated sensory
inputs, to try an escape. The basic dilemma is that a rapid shift
from immobility to movement can once again attract the preda-
tor’s attention, while prolonged immobility or a slow shift
leaves the individual vulnerable for a long time. According to
our results, individuals that tongue flicked more frequently hes-
itated to attempt escape, which supports one of our starting
hypotheses (i.e., precautious intensive TF is associated with a
delay in fleeing) but refutes the other (i.e., individuals showing
more TF sequences should escape sooner). The indecisiveness
of some individuals about moving (i.e., accompanied by more
TF sequences) may indicate strong interindividual variations of
risk assessment (Boissy & Bouissou, 1995), possibly revealing
personality traits. Personality traits have been described in
other animal species, including snakes (Bell & Sih, 2007;
Briffa & Greenaway, 2011; Cote et al., 2010; Mirk�o
et al., 2013; �Simkov�a et al., 2017; Stahlschmidt et al., 2016),
and should be investigated in dice snakes. Other factors may
also affect the decision to flee, such as the individual’s health
status and the relative fitness costs of fleeing or remaining still
(Hemmi & Pfeil, 2010; Sih, 1997; Ydenberg & Dill, 1986).
Our study indicates a significant relationship between the

occurrence of DF and the number of TF sequences, where
individuals that displayed DF had more TF sequences after

exiting DF (Fig. 3). When in the state of DF, dice snakes are
usually without muscle tone or visible breathing movement
and may even exhibit bradycardia similar to DF displays in
other snakes (e.g., Heterodon platyrhinos, McDonald, 1974).
Such decrease in heart rhythm, respiratory rate, and sometimes
even body temperature in animals (reviewed by Rogers &
Simpson, 2014) has been attributed to the cortical depression
hypothesis (i.e., cortical activity is assumed to be inhibited by
heightened brain stem activity, Wendt, 1936). It seems that
during DF, some animals, presumably even dice snakes, expe-
rience minimal activity of the sensory systems. Upon exiting
DF, dice snakes could increase the number of TF sequences in
order to gain the crucial information in their immediate sur-
roundings and re-evaluate predation risk. The pattern we
observed is consistent with the idea that prey animals ought to
adapt their antipredator responses in accordance with the sever-
ity of the predatory threat (‘threat sensitivity hypothesis’,
Helfman, 1989).
Different morphs in many colour-polymorphic species

exhibit apparent differences in defensive behaviour (Abdel-
Rehim et al., 1985; Allen et al., 2013; Brock et al., 2022;
Brock & Madden, 2022; Brodie, 1992; Jackson et al., 1976;
King & Lawson, 1997; Sowersby et al., 2015; Sreelatha
et al., 2021; Tate et al., 2016; Venesky & Anthony, 2007;

25

50

75

0 50 100 150 200
Decision to escape (seconds)

T
F

se
q

State

Female

Gravid

Male

Figure 2 The number of TF sequences versus time from decision to attempt escape to actual escape (in seconds) during the post-capture

immobility phase. Linear regression lines, with shaded areas representing 95% confidence intervals on the predicted value of the number of TF

sequences are presented for males (blue, N = 94), non-gravid females (red, N = 87), and gravid females (green, N = 91).
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Williams et al., 2012). For example, snakes with blotched pat-
terns use immobility more readily, while uniformly coloured
snakes rely on flight when facing a predator (Allen
et al., 2013; Jackson et al., 1976). Although our results did not
point to colour morph as a significant factor affecting the
occurrence of immobility, we did find significant differences in
the duration of immobility among the different morphs.
Blotched snakes had the longest duration of immobility
(~45 s), followed by melanistic snakes (~31 s) and uniformly
green snakes (~30 s). This supports the ideas outlined by

Jackson et al. (1976), Allen et al. (2013), and Brock and Mad-
den (2022) – blotched dice snakes rely on longer bouts of
immobility than uniformly coloured dice snakes, and this dis-
tinct combination of morph and behaviour could be under nat-
ural selection (Brodie, 1992). The peculiarities of different
colour morphs of dice snakes are yet to be unravelled, includ-
ing their thermal, antipredator, and locomotor distinctiveness.
Differences between the sexes in antipredator behaviours are

common in animals (Blanchard et al., 1992; Han et al., 2015;
Johnsson et al., 2001; Williams et al., 2001), although many

DF: No DF: Yes

60 70 80 90 100 60 70 80 90 100

0

10

20

30

40

SVL (cm)

T
F

se
q

State

Female

Gravid

Male

Figure 3 The number of TF sequences versus snout-vent length (SVL, in cm) of snakes for those that feigned death and those that did not

during post-capture immobility. Linear regression lines, with shaded areas representing 95% confidence intervals on the predicted value of the

number of TF sequences are presented on left for non-DF males (blue, N = 67), non-DF non-gravid females (red, N = 51), non-DF gravid females

(green, N = 61), and on right for DF males (blue, N = 27), DF non-gravid females (red, N = 35), and DF gravid females (green, N = 30).
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snake studies did not find such a sex effect (Cooper
et al., 2008; Golubovi�c et al., 2021; Roth & Johnson, 2004;
Shine et al., 2003). Instead, our results revealed a complex pat-
tern with significant differences between the sexes in the
occurrence of DF, but no effect on the duration of DF or
immobility. In snakes, males are usually the smaller and more
agile sex (Bonnet, Ineich, & Shine, 2005; Lourdais
et al., 2006); if male dice snakes, which are smaller than
females, are also more agile, they might be more reliant on
flight in avoiding predation and, in turn, less reliant than
females on a risky tactic like DF.
Larger dice snakes performed DF for longer periods and

explored their surroundings with fewer TF sequences compared
to smaller individuals (Fig. 3). Body size is an important deter-
minant of antipredator behaviour, possibly because larger ani-
mals are usually less vulnerable (Bonnet, Aubret, et al., 2005;
Honma et al., 2006). In the context of DF, especially in a
locality with strong avian predation such as Golem Grad,
larger snakes can afford to remain in DF for longer; further,
certain birds such as herons are gape-limited predators that
cannot easily swallow large snakes (Golubovi�c et al., 2021).
Snakes with food in their stomachs showed significantly

more TF sequences when assessing potential risks before
escaping and took more time to start fleeing. The presence of
food impairs snake movement (Garland & Arnold, 1983; Her-
zog & Bailey, 1987) and may limit escape ability, which in
turn requires different risk assessment before an escape attempt
and is reflected in the higher number of TF sequences.
Our results show that gravid dice snakes are less prone to

DF displays, supporting the results of our previous study
(Golubovi�c et al., 2021). Numerous studies have shown that
female snakes alter their antipredator behaviour during gravid-
ity (Brodie, 1989; Brown & Shine, 2004; Gregory, 2008,
2016; Maillet et al., 2015). These changes in behaviour have
been attributed to physical burden of developing eggs or
embryos, which have a negative effect on locomotion. Our
models also show that gravid snakes generally displayed more
TF sequences during the tests (Fig. 2). This might indicate
that gravid snakes are less prone to taking risks, likely
because developing eggs represent a valuable asset (“asset pro-
tection principle”, Clark, 1994). By tongue flicking more
often, gravid females can make an “informed” decision on
when exactly to escape. This does not exclude the possibility
that the effect of gravidity may vary, depending on the stage
of gravidity and clutch size, which remains a direction for
future study.
Unexpectedly, cloacal temperature did not significantly affect

immobility displays of dice snakes. However, immobility has
been shown to be associated with body temperature in other
snake species (Storeria dekay, Gerald, 2008) and in other ani-
mal species (e.g., woodlice, Saxena, 1957; seedbeetles, Miya-
take et al., 2008; mealworm, Krams et al., 2014). Due to the
lack of a significant association between cloacal temperature
and immobility displays, we can safely assume that all the
snakes tested (including 89% of snakes caught in the open and
11% caught from under cover) were probably within their nor-
mal thermal range for activity. It is possible that testing snakes

further from their temperature optima might lead to significant
effects of temperature on immobility/DF.
Notably, the presence of injuries was retained in several

best-fit models and, although not statistically significant, had a
negative effect on the occurrence and duration of post-capture
behaviour (Tables S1 and S2). Previous experience with a
predator is expected to shape the prey’s response in a subse-
quent encounter (Bonnet, Aubret, et al., 2005; Gregory, 2013;
Shier & Owings, 2006), and this remains another future direc-
tion to be studied in greater depth.

Conclusion

Our study clearly demonstrates the effects of multiple pheno-
typic traits on different sequential phases of post-capture anti-
predator behaviour. Tongue flicking is an important factor that
indicates a delayed flight following post-capture immobility,
and in turn it is significantly associated with a set of pheno-
typic traits. These results emphasize complex relationships
between post-capture antipredator behaviour, sensory informa-
tion relayed through tongue flicking, morphological traits, and
physiological status. Future studies may explore how animals
gauge their surroundings and perceive risk, especially in high-
risk–high-reward situations such as those conducive to post-
capture immobility and death feigning. Finally, the potential
influence of personality, ontogenetic shifts, and locomotor per-
formances may also have a considerable but rarely tested effect
on passive antipredator displays.
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Supporting Information

Additional Supporting Information may be found in the online
version of this article:

Table S1. Model selection procedure of the competitive gen-
eralized linear models built to explain variation of post-capture
immobility in dice snakes, using additive (+) effects of colour
morph (M), sex and reproductive state (S), presence of injuries
(I), presence of food (F), cloacal temperature (T), SVL, and
number of tongue flicking sequences (TFseq).
Table S2. Model selection procedure of the competitive gen-

eralized linear models built to explain variation in tongue flick-
ing during post-capture immobility, using additive (+) effects
of colour morph (M), sex and reproductive state (S), presence
of injuries (I), presence of food (F), cloacal temperature tem-
perature (T), SVL and occurrence of DF (DF).
Table S3. Factors from best-fit models with associated odds

ratios (OR), coefficients, standard errors and P values.
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