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Abstract
The gerbil, Gerbillus gerbillus, a nocturnal desert rodent of northern Africa, exhibits 
a seasonal reproductive cycle with marked anatomical and behavioural shifts be-
tween breeding season and resting season. The aim of this study is to investigate 
key elements involved in these seasonal changes, specifically in males: the histol-
ogy of the testis as well as the expression of the G- protein- coupled oestrogen re-
ceptor 1 (GPER1) in the testis. During the breeding season, the seminiferous tubules 
were full of spermatozoa, and their epithelium contained germinal cells embedded 
in Sertoli cells. Amidst tubules, well- developed Leydig cells were observed around 
blood vessels, with peritubular myoid cells providing structural and dynamic support 
to the tubules. GPER1 was largely expressed throughout the testis. Notably, Leydig 
cells, spermatogonia and spermatocytes showed strong immunohistochemical sig-
nals. Sertoli cells, spermatozoa and peritubular myoid cells were moderately stained. 
During the resting season, spermatogenesis was blocked at the spermatocyte stage, 
spermatids and spermatozoa were absent and the interstitial space was reduced. The 
weight of the testis decreased significantly. At this stage, GPER1 was found in Leydig 
cells, spermatocytes and peritubular myoid cells. Sertoli cells and spermatogonia were 
not marked. Overall, the testis of the gerbil, Gerbillus gerbillus, has undergone notice-
able histological, cellular and weight changes between seasons. In addition, the sea-
sonal expression pattern of GPER1, with pronounced differences between resting 
season and breeding season, indicates that this receptor is involved in the regulation 
of the reproductive cycle.
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1  |  INTRODUC TION

The gerbil, Gerbillus gerbillus, is a small, primarily nocturnal rodent 
adapted to extreme environmental conditions that prevail in the 
arid deserts and semi- deserts of northern Africa. Drastic seasonal 
climatic fluctuations shape the reproductive cycle of this small 
mammal. The breeding season starts in early winter (December– 
January) and peaks in early spring (April) when feeding resources 
are available. The rapid increase in ambient temperature associated 
with the decrease in precipitation and foraging opportunities in-
duce the resting season; sexual activity strongly declines in spring 
(May– June) and reaches its nadir in autumn (September– October) 
(Amirat et al., 1977). In males, maturity occurs when body mass 
reaches 17– 18 g (Klein et al., 1975), and the testis undergoes radi-
cal seasonal changes. Testis mass increases significantly during the 
breeding season and decreases during the resting season (Amirat 
et al., 1977). Plasma concentration of testosterone, testicular con-
tent of testosterone and androstenedione exhibit parallel seasonal 
changes with high and low values, respectively, in April and autumn 
(Amirat et al., 1977).

Besides androgens, other steroids, notably oestrogens, play 
a key role in male reproductive physiology; they influence the 
hypothalamic– pituitary- testis axis and spermatogenesis by acting on 
Sertoli, Leydig and germ cell functions (Hess et al., 1997; O'Donnell 
et al., 2001). Oestrogens are involved in spermatogonial stem cell 
division (Miura et al., 1999). They initiate, maintain spermatogene-
sis (Ebling et al., 2000) and promote germ cells survival (Pentikäinen 
et al., 2000). In the reproductive tract, oestrogens are mainly se-
creted by germ cells, spermatozoa and Leydig cells (Carreau & 
Hess, 2010; Carreau & Silandre, 2007; Payne et al., 1976). The effects 
of oestrogens, mediated via the nuclear receptors ESR1 and ESR2 
(oestrogen receptor 1 and oestrogen receptor 2 genes), are repre-
sented by nuclear genomic regulations (Kuiper et al., 1997). These 
receptors are widely expressed in the testis of mammalian species 
such as rats, mice, goats, boars, humans and other primates; how-
ever, the pattern of cellular localisation differs among lineages and 
between types of receptor (Chimento et al., 2010; Lucas et al., 2010; 
Menad et al., 2017; Sheng & Zhu, 2011; Sirianni et al., 2008; Vaucher 
et al., 2014; Zhang et al., 2014). The seven- transmembrane G pro-
tein oestrogen receptor1 (GPER1) is also involved; it prompts rapid 
non- genomic cellular responses (Hess et al., 2011; Prossnitz & 
Barton, 2014; Rago et al., 2011) and is mainly found in the endo-
plasmic reticulum compartment (Prossnitz & Barton, 2014; Sirianni 
et al., 2008). Thus, oestrogens activate different pathways and trig-
ger different responses when binding to ESRs versus GPER1 recep-
tor. ESRs (oestrogen receptors) control transcription factors and 
directly regulate gene expression, while GPER1 activates proteins 
that modulate transcription factor activity (Filardo & Thomas, 2005; 
Prossnitz et al., 2007; Prossnitz & Maggiolini, 2009; Revankar 
et al., 2005). For instance, ESR1 can trigger delayed cell prolifera-
tion, but GPER1 can prompt rapid anti- apoptotic effects in cultured 
Sertoli cells. Still, complex crosstalk between these two different 
regulatory pathways may occur (Lucas et al., 2010). To elucidate the 

precise functions of oestrogens in male reproductive physiology, no-
tably those mediated by GPER1, a major prerequisite is to locate cel-
lular sites of action, hence the tissular distribution of this receptor, 
and to track changes in its expression.

Seasonal changes in the localisation and intensity of the ex-
pression of oestrogen receptors have been monitored in the testis 
of one small desert rodent, the sand rat Psammomys obesus (Menad 
et al., 2017). Experimental investigations notably revealed marked 
seasonal variations in the histology of the reproductive tract, hor-
mone levels and expression of several proteins, oestrogen receptors 
and other hormone receptors (Menad et al., 2017). These seasonal 
changes are associated with the fluctuations of trophic and hydric 
resources; likely, they optimize reproductive success, and thus they 
are considered adaptive (Menad et al., 2017). However, results ob-
tained in a single species preclude generalisation. Further studies are 
needed to assess to what extent the patterns observed in the sand 
rat also exist in other small desert rodents that face similar environ-
mental constraints. Indeed, GPER1 localisation in the reproductive 
tract has been mainly investigated in laboratory animals but rarely in 
free- ranging animals. Thus, the implication of oestrogen receptors 
in the seasonal regulation of the reproduction of free- ranging mam-
mals remains particularly understudied. Species that exhibit drastic 
seasonal fluctuations in their reproductive activity provide excellent 
opportunities to fill up this paucity of information.

This study was designed to examine seasonal changes in the 
histology of the testis during breeding season and resting season 
of Gerbillus gerbillus, a small desert rodent that expresses a strong 
seasonality in its annual activity cycle (Amirat et al., 1977). We nota-
bly aimed to study the expression pattern of GPER1, considering its 
importance in mediating oestrogen action on the reproductive tract 
and on spermatogenesis.

2  |  MATERIAL S AND METHODS

2.1  |  Ethical note

All experiments complied with the Algerian legislation (Law Number 
95– 322/1995) regarding the protection of animals involved in ex-
perimental and other scientific purposes, as well as with the guide-
lines of the Algerian Association of Experimental Animal Sciences 
(AASEA) and were specifically approved by the latter (AASEA au-
thorisation number 45/DGLPAG/DVA/SDA/14).

2.2  |  Animals and samples

Sixteen adult males Gerbillus gerbillus (mean weight 29.25 ± 2.27 g) 
were captured in the wild of Béni Abbès area (30°07′N; 2°10′W). 
Eight animals were caught during the breeding season in January 
and March (Group 1), and eight were caught during the resting sea-
son in June and July (Group 2). They were housed in outdoor en-
closures (120 × 60 × 60 cm); natural food (Daly & Daly, 1973), fresh 
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water and shelter were provided. They were subjected to the natural 
environment, ambient temperature and photoperiod. They were eu-
thanized using decapitation 48 h after capture, and their testis were 
quickly removed, weighted and fixed in Bouin's solution.

2.3  |  Histology

The testis underwent the classical histology procedure, dehydrated 
in increasing concentrations of ethanol (70%, 95% and 100%), 
cleaned in toluene and embedded in paraffin. Samples were then 
sectioned, using a Leitz microtome, into 5 μm slices and mounted 
on histological Superfrost®glass slides (Thermo Scientific, Menzel- 
Gläser, Brausschweig, Germany). Dewaxed sections were rehydrated 
in decreasing concentrations of ethanol (100%, 95% and 70%) and 
stained with Masson's trichrome (Gabe, 1976; Martoja & Martoja- 
Pierson, 1967). The cytoplasm appeared pink; nuclei were black; 
peritubular myoid cells showed a red colour; and collagen was green.

2.4  |  Immunohistochemistry

Immunohistochemistry was used to localize GPER1 in the testis 
(Menad et al., 2014). After deparaffinisation and rehydration, the 
slides were washed in tap water for 10 min, then with PBS (phos-
phate buffered saline), and incubated at 95°C in a 10 mM sodium 
citrate solution (H- 3300, pH 6.0) for 45 min. The slides were left to 
chill for 20 min, washed in distilled water and immersed in a 3% per-
oxidase solution for 20 min, followed by two baths of distilled water 
to block the endogenous peroxidase activity. The testis sections 
were bordered by drawing circles with DakoPen (Dako, Glostrup, 
Denmark), incubated with 10% normal goat serum (S- 1000) for 1 h 
at room temperature to block non- specific binding sites, then incu-
bated with the GPER1 (ab39742, Abcam plc, Cambridge, UK, GPER1 
antibody was used as 1:50 dilutions in PBS) primary antibody in a 
wet chamber for 2 h. Other slides were incubated with normal goat 
serum instead of the primary antibody and thus served as negative 
controls. All slides were washed in PBS solution before being reintu-
bated again with the secondary biotinylated antibodies (Anti- Mouse 
IgG/Rabbit IgG; BA- 1400, Vectastain Universal, Vector Labora-
tories, Burlingame, CA, USA) for 1 h in a wet chamber. Lastly, the 
slides were rinsed three times in PBS for 5 min and incubated with 
a streptavidin- biotin- peroxidase complex for 1 h. As for staining, a 
DAB chromogen (3,3- diaminobenzidine, kit for peroxidase; Vector 
Laboratories) was added for 1 min and washed with PBS before and 
after staining. Haematoxylin (Hematoxylin QS, H- 3404; Vector Lab-
oratories) was used for 1 min to counterstain the slides. Finally, the 
slides were dehydrated and preserved using the Permount mounting 
medium (Thermo Fisher Scientific), observed using the Nikon Eclipse 
E 400 light microscope, and pictured with the Nikon DXM 1200 digi-
tal camera. The immunohistochemical signal intensity was rated by 
two observers unwary of the receptor under study: null (−), weakly 
positive (+), moderately positive (++) or strongly positive (+++).

2.5  |  Statistical analysis

After verifying normality, testicular weights were compared using 
the Student's t- test. All calculations were performed using OriginPro 
8.0 software (OriginLab Corp.). A probability below 0.001 was con-
sidered significant.

3  |  RESULTS

3.1  |  Testicular mass

The mean testicular mass was significantly lower during the resting 
season compared to the breeding season (mean ± SD, standard de-
viation, respectively: 0.108 ± 0.004 g vs. 0.183 ± 0.005 g; p < 0.001; 
Figure 1).

3.2  |  Histology

Masson's trichrome staining revealed differences between breeding 
season and resting season. During the breeding season, at low mag-
nification, the testis had a lobular architecture composed of well- 
developed seminiferous tubules with an interstitial compartment 
(Figure 2, Panel 2a). The testis was encapsulated into a thick, fibrous 
albuginea (Figure 2, Panel 2b). At higher magnification, the semi-
niferous tubules revealed a typical functionally high and stratified 
epithelium containing germinal cells (spermatogonia, spermatocytes, 
spermatids and spermatozoa) settled between Sertoli cells, while the 
lumen was full of spermatozoa (Figure 2, Panel 2c). The basement 
membrane of the tubules was attached to peritubular myoid cells 
(Figure 2, Panel 2c). In the interstitial compartment, composed of 
connective tissue, we observed dispersed or aggregated Leydig cells 
around blood vessels (Figure 2, Panel 2d).

In contrast, during the resting season, at low magnification, the 
testis was filled up with narrow seminiferous tubules, separated by 
the interstitial space formed of reduced connective tissue and Ley-
dig cells (Figure 3, Panel 3a). The fibrous capsule surrounding the 
seminiferous tubules was very thick (Figure 3, Panel 3b). At high 
magnification, the seminiferous tubules were narrow and empty 
as spermatogenesis was blocked at the stage of spermatocyte I; 
therefore, there were neither spermatids nor spermatozoa (Figure 3, 
Panel 3c). In the interstitial space, we observed Leydig cells, blood 
vessels and peritubular myoid cells surrounding the seminiferous tu-
bules (Figure 3, Panel 3d).

3.3  |  Immunohistochemistry

The results of immunohistochemistry for GPER1 in the testis of Ger-
billus gerbillus are summarized in Table 1.

During the breeding season, GPER1 was ubiquitously expressed 
in the testis. Leydig cells, spermatogonia and spermatocytes showed 
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strong cytoplasmic immunohistochemical staining; Leydig cells 
nuclei were weakly marked, and spermatocytes nuclei were not 
marked (Figure 4, Panel 4a). Sertoli cells, spermatids, spermatozoa 
and peritubular myoid cells appeared moderately stained (Figure 4, 
Panel 4b).

During the resting season, Sertoli cells did not express GPER1. 
However, Leydig cells showed moderate cytoplasmic immunohisto-
chemical staining (Figure 4, Panel 4d). As for germinal cells, GPER1 
was not found in spermatogonia but was strongly expressed by 

spermatocytes. Peritubular myoid cells exhibited a weak immuno-
histochemical signal (Figure 4, Panel 4e).

4  |  DISCUSSION

This study provides new insights regarding histological changes and 
the distribution pattern of GPER1 in the testis of Gerbillus gerbillus 
during the reproductive cycle (Figure 5). This nocturnal desert rodent 

F I G U R E  1  Average testicular 
mass of Gerbillus gerbillus during the 
breeding season and the resting season. 
*** p < 0.001

F I G U R E  2  Histology of the testis of 
Gerbillus gerbillus during the breeding 
season. Panels a and b low magnification. 
The testis was made up of seminiferous 
tubules (ST) dispersed in interstitial 
compartment (IC), all surrounded 
with albuginea (A). Panels c and d 
High magnification. The seminiferous 
epithelium was composed of Sertoli 
cells (SC) that maintain germinal cells: 
spermatogonia (SG), spermatocytes (SCt), 
spermatids (SD), the lumen (LU) was full 
of spermatozoa (SPZ). The interstitial 
compartment was formed of connective 
tissue, Leydig cells (LC), blood vessels (BV) 
and peritubular myoid cells (PMC) around 
the tubules. Masson's trichrome staining.
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breeds from April to September (Amirat et al., 1977); a similar pat-
tern was also observed in a variety of desert rodents (e.g. Meriones 
libycus, Massouteria mzabi, Jaculus orientalis, Mesocricetus auratus and 
Phodopus sungorus) (Cheniti Lamine, 1974; Hoffman & Reiter, 1965; 
Hoffmann, 1973; LeBerre & Chevallier, 1990). However, other ro-
dents breed during different periods of the year, including species 
that live in the same biotope as Gerbillus gerbillus. For example, the 
sand rat (Psammomys obesus) breeds from autumn to early spring 

(Khammar, 1987). The small Gerboise (Jaculus jaculus) breeds in Fall– 
Winter (Ghobrial & Hodieb, 1973), the Dwarf Gerbil (Gerbillus nanus) 
in winter (LeBerre & Chevallier, 1990), the Saharian Goundi (Cteno-
dactylus gundi) in winter– spring (Gouat, 1985) and the white- bellied 
Gerbil (Gerbilliscus leucogaster) in autumn- winter– spring (Muteka 
et al., 2018). These differences suggest that contrasted regula-
tory mechanisms allow individuals to integrate the fluctuations of 
environmental conditions (e.g. ambient temperature, precipitation, 
humidity and food availability) with photoperiod and possibly with 
other factors (e.g. predatory pressure) to optimize reproductive out-
put (Aschoff, 1955; Heldmaier et al., 1989). To decipher the diversity 
of the processes that link complex relationships between environ-
mental variables and reproductive cycles in desert rodents, it is es-
sential to investigate hormonal regulation at different levels.

During the breeding season, in our study, the testis of Gerbillus 
gerbillus included a set of large seminiferous tubules formed by a 
highly organized epithelium and surrounded by peritubular myoid 
cells. The seminal epithelium is formed of Sertoli cells that support 
germinal cells (spermatogonia, spermatocytes, spermatids and sper-
matozoa). The lumen was full of sperm, and the interstitial space was 
composed of Leydig cells isolated or grouped around blood vessels. 
In stark contrast, during the resting season, a marked atrophy of the 
seminiferous epithelium was associated with a blockage of sper-
matogenesis, spermatids and spermatozoa were absent, this explains 
the narrow empty appearance of the lumen. In addition, the intersti-
tial space was reduced. The results of the current work mirror those 
obtained in sympatric species (Psammomys obesus, Gerbillus tarabuli 
and Gerbilliscus leucogaster) (Gernigon- Spychalowicz, 1992; Hamida-
tou Khati & Hammouche, 2021; Khammar, 1987; Menad et al., 2017; 
Muteka et al., 2018). Moreover, the changes observed in Leydig cells 

F I G U R E  3  Histology of the testis 
of Gerbillus gerbillus during the resting 
season. Panels a and b Low magnification. 
The seminiferous tubules (ST) seemed 
narrow and empty; the interstitial 
compartment (IC) looked less developed. 
Panels c and d High magnification. The 
seminiferous epithelium contained only 
spermatogonia (SG) and spermatocyte 
(SCt) maintained by Sertoli cells (SC). 
Lumen was empty, there was no 
spermatozoa since spermatogenesis was 
blocked at the stage of spermatocyte I. In 
the interstitial compartment, we observed 
some Leydig cells (LC) in connective tissue 
around blood vessels (BV). Masson's 
trichrome staining.

TA B L E  1  Immunolocalisation of GPER1 in the testis of Gerbillus 
gerbillus.

Localisation
Breeding 
season

Resting 
season

Sertoli cells N / /

C +/++ −

Leydig cells N + /

C +++ ++

Spermatogonia N / /

C +++ −

Spermatocyte N − −

C ++/+++ +++

spermatid N / /

C ++ /

Spermatozoa N / /

C ++ /

Peritubular myoid cell N / /

C +/++ +

Abbreviations: N, nuclei; C, cytoplasm.
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in our study, the increase of the nucleo- cytoplasmic ratio and the 
reduction of cytoplasmic volume noticed during the resting season 
in Psammomys obesus and Gerbillus tarabuli, evince the inhibition of 
the metabolic activity of Leydig cells (Gernigon- Spychalowicz, 1992; 
Hamidatou Khati & Hammouche, 2021).

Seasonal variations in the testicular activity in seasonal breeders 
have been documented in desert rodents (Psammomys obesus, Gerbil-
lus gerbillus, Gerbillus tarabuli and Gerbilliscus leucogaster); testicular 
mass, testicular and plasma concentrations of testosterone decrease 
significantly during the resting season (Amirat et al., 1977; Boufer-
mes et al., 2013; Gernigon- Spychalowicz, 1992; Hamidatou Khati & 
Hammouche, 2021; Khammar, 1987; Khammar & Brudieux, 1987; 
Muteka et al., 2018). In these cases, the interplay among histolog-
ical compartments, hormonal levels and the regulation of receptors 
provides evidence that breeding is stimulated during a brief period 
when resources are available. It would be interesting to investigate 
to what extent this pattern is widespread and modulated in desert 
rodents, especially in species that exhibit a different annual pattern 
(e.g. winter breeders).

Actually, there are differences among species. In comparison 
to the gerbil, in the sand rat, the immunolocalisation pattern of 
GPER1 was broadly similar but with different signal intensity 
(Menad et al., 2017). In the absence of comparable studies on 
other free- ranging animals, we cannot easily interpret these dif-
ferences. Yet, abundant studies in captive animals and in wild 
animals that do not face drastic environmental fluctuations 
during the year provide opportunities to discuss our results. 
Unfortunately, most captive breeding programs are motivated 
by conversational objectives, and natural environmental con-
straints are artificially relaxed (Conde et al., 2011). Captive ani-
mals exhibit strong peculiarities regarding their health, genetics, 
nutrition, behaviour, physiology and reproductive status, mak-
ing comparisons with free- ranging individuals difficult (Clauss 
et al., 2008; Edwards et al., 2015; Scheun et al., 2016; Van der 
Weyde et al., 2016). Furthermore, reproduction is not guaranteed 
in captivity, likely because the key environmental determinants 
are lacking (Christie et al., 2012; Farquharson et al., 2021). In 
breeding depression, inappropriate social development, maternal 

F I G U R E  4  Immunolocalisation of 
GPER1 in the testis of Gerbillus gerbillus. 
Panels a and b during the breeding season, 
the immunohistochemical signal was 
found all over the testis. Spermatogonia 
(SG), spermatocytes (SCt) and Leydig 
cells (LC) presented a strong staining. 
While Sertoli cells (SC), spermatids (SD), 
spermatozoa (SPZ), fibroblasts (F) as well 
as peritubular myoid cells (PMC) were 
moderately marked. Panel c negative 
control. Panels d and e during the resting 
season, we observed the absence of 
GPER1in Sertoli cells, spermatogonia 
(SG). However, spermatocytes (SCt) were 
strongly marked, Leydig cells (LC) were 
moderately stained, peritubular myoid 
cells (PMC) presented a weak signal. Panel 
f negative control. Empty arrows: absence 
of immunohistochemical staining. Full 
arrows: presence of immunohistochemical 
staining.
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effects, unbalanced food or stress may all hamper reproduc-
tion (Boakes et al., 2006; Kiik et al., 2013; Levallois & De Mari-
gny, 2015; Matos, 2012).

Abundant information suggests that oestrogen plays a key role 
in male reproductive cycles. In this study, Leydig cells express 
GPER1 during the whole year, which supports the idea that the ac-
tivity of Leydig cells is regulated by E2 (Pelletier & El- Alfy, 2000; 
Saunders et al., 1998). Similar results were found in the sand rat 
(Psammomys obesus), where Leydig cells not only expressed GPER1, 
but also ESRs, E2 and aromatase (Menad et al., 2017). GPER1 is 
expressed in the endoplasmic reticulum and Golgi apparatus 
(Prossnitz et al., 2007), as well as in the plasma membrane (Filardo 
et al., 2007), so the GPER1 found in the nuclei of Leydig cells during 
the breeding season may be expressed in the endoplasmic reticu-
lum. Moreover, Leydig cells are the main sources of testosterone 
(Huhtaniemi & Teerds, 2018), and their expression of the GPER1 
may be an indicator of the regulation of their function by E2 via the 
GPER1. Isolated human and rat Leydig cells expressed GPER1 and 
released less testosterone when treated with E2 and GPER1 antag-
onist (G1) (Vaucher et al., 2014), this may explain the decreased 
levels of testosterone during the resting season in Gerbillus gerbillus 
(Khammar & Brudieux, 1987). Furthermore, studies conducted on 
mice revealed the contribution of GPER1 with ESRs and aromatase 
in regulating oestrogen concentration and secretion in Leydig cells. 
GPER1 blockage decreased GPER1 mRNA levels but increased aro-
matase, ESR1 and ESR2 mRNA levels. In contrast this treatment 
had no effect on testis histology but Leydig cells had large mito-
chondria and numerous lipid droplets (Kotula- Balak et al., 2018). 

GPER1 subcellular localisation could be found in: plasma mem-
brane, endoplasmic reticulum and Golgi apparatus (Chimento 
et al., 2014), and it is downregulated in the Golgi apparatus (Cheng 
et al., 2011) suggesting the importance of the GPER1 in the Golgi 
complex and mitochondrial functions. Moreover, GPER1 is involved 
in insulin secretion in β pancreatic cells (Sharma & Prossnitz, 2011) 
and lipid metabolism (Santolla et al., 2012). Besides, in the testis of 
Gerbillus gerbillus, Leydig cells expressed GPER1 during the whole 
year, reflecting the importance of GPER1 regulation of Leydig cell 
functions during the reproductive cycle. Hence, these data may 
confirm the ability of E2 via the GPER1 to control steroidogenesis 
in the Leydig cells (Hess, 2003; Vaucher et al., 2014) as found in the 
fish gonads (Pang & Thomas, 2010; Thomas et al., 2006). In addi-
tion, Leydig cells are involved in Sertoli cells proliferation and mat-
uration via the GPER1. Furthermore, it is well known that Sertoli 
cells play a significant role in maintaining spermatogenesis (Jeégou 
& Rolland, 2018), and their functions are regulated by E2 (Hess & 
França, 2005). In our study, Sertoli cells expressed GPER1 only 
during the breeding season, where spermatogenesis was active, 
suggesting that E2 regulates Sertoli cells via GPER1 in the testis of 
Gerbillus gerbillus. Moreover, in humans and immature rats, ERs 
(ESR1, ESR2 and GPER1) are present in the Sertoli cells (Filipiak 
et al., 2012; Lucas et al., 2008), as observed in the Sertoli cells of 
the sand rat (Menad et al., 2017). Nevertheless, in Sertoli cells, 
GPER1 mediates MAPK3/ERK1 (mitogen- activated protein kinase 
3/extracellular signal- regulated kinase 1) pathway through the acti-
vation of EGFR (epidermal growth factor receptor), hence the acti-
vation of the GPER/EGFR/MAPK3/1 signalling pathway increased 

F I G U R E  5  Schematic representation of the expression of GPER1 in the testis of Gerbillus gerbillus during the breeding season and the 
resting season.
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Bcl- 2 and decreased Bax expression leading to anti- apoptotic ef-
fects (Lucas et al., 2011, 2010; Royer et al., 2012). Thus E2 mediates 
(Lucas et al., 2014), via GPER1, gene regulation and apoptosis, to 
maintain Sertoli cell functions as well as normal testis development 
and homeostasis (Lucas et al., 2010). Oestrogens regulate seasonal 
functions of the testis in free- ranging vertebrates (Beguelini 
et al., 2014; Caneguim et al., 2013; Oliveira et al., 2009; Schön & 
Blottner, 2008; Zarzycka et al., 2016). According to Zarzycka 
et al., 2016, GPER1 expression was higher during the long days 
(long photoperiods) compared with the short days (short photope-
riods), which suggests that GPER1 regulates seasonal testis activity 
(Zarzycka et al., 2016), while in our study, the breeding season is 
during the short days of winter and is associated with food avail-
ability. In the roe deer bucks, the expression of the GPER1 was sim-
ilar in the testis compared with the adrenal gland during the pre- rut 
period (Pawlicki et al., 2023). Leydig cells were weakly marked, and 
testosterone levels were higher than oestrogen levels. Comparable 
results found in our study on Gerbillus gerbillus were Leydig cells 
expressed GPER1 during both seasons and testosterone levels de-
creased during the resting season (Amirat et al., 1977). Research 
performed by Milon and colleagues reported the presence of a 
novel cell type, telocytes (TCs), in bank vole testis interstitium. 
These cells were present regardless of seasonal changes of the 
photoperiod throughout the year and GPER1 blockage did not af-
fect their number and distribution (Milon et al., 2019). In the peritu-
bular myoid cells, GPER1 was detected during both seasons as 
documented in the sand rat (Menad et al., 2017). This cell type is 
responsible for sperm transport along the seminiferous tubules, 
and it is under the control of E2 (Shughrue et al., 1996). In our study, 
all germ cells expressed GPER1 during the breeding season, but 
only spermatocytes were marked during the resting season; thus, 
E2 may also ensure the blockage of spermatogenesis during the 
quiescent period. In several species (e.g. roe deer, equine, bank vole 
and ground squirrel), oestrogens are involved in spermatogenesis 
(Gancarczyk et al., 2004; Gautier et al., 2016; Li et al., 2015; Schön 
& Blottner, 2008; Zhang et al., 2010) by interfering in the sperma-
tid's differentiation (Robertson et al., 2002), spermatocyte and 
sperm maturation (O'Shaughnessy, 2014; Smith et al., 2015). The 
presence of GPER1 in spermatocytes and spermatids in the testis 
of Gerbillus gerbillus may be an indicator of oestrogen proliferative 
effect on the germ cells, via the activation of the epidermal growth 
factor receptor/extracellular signal- regulated kinases (EGFR/ERK) 
pathway (Chimento et al., 2014), as a result induce spermatogenesis 
during the breeding season and block spermatogenesis at the stage 
of spermatocytes during the resting season. In photo- regressed 
adult males of the Siberian hamster, oestrogens initiate spermato-
genesis independently of FSH (Follicle- stimulating hormone) (Pak 
et al., 2002). E2 inhibits germ cell apoptosis in human (Delbès 
et al., 2004; Mishra & Shaha, 2005; Pentikäinen et al., 2000), while 
in immature and adult rats, E2 promotes germ cell apoptosis 
(Blanco- Rodríguez & Martínez- García, 1997; Walczak- Jedrzejowska 
et al., 2007). Furthermore, E2 stimulates the mitotic division of 
spermatogonia (Pierantoni et al., 2009), and has proliferative 

effects mediated by crosstalk between GPER1 and ESR1 in mouse 
spermatogonial GC- 1 cell line through the activation of EGFR/ERK/
fos/cyclin D1 (Sirianni et al., 2008). In Sprague– Dawley rats, E2 and 
G1 (the selective GPER1 agonist) down- regulate the expression of 
cyclin A1 and B1 mRNA and upregulate the pro- apoptotic factor 
Bax (B- cell lymphoma 2- associated X protein) by working through 
both ESR1 and/or GPER1 in pachytene spermatocytes to control 
the cell proliferation/apoptosis balance (Chimento et al., 2010; 
Sirianni et al., 2008). Moreover, in round spermatids, E2 controls 
apoptosis and differentiation by modulating the transcription of cy-
clin B1 and Bax through the activation of EGFR/ERK pathway (Chi-
mento et al., 2011). However, this apoptotic effect of E2 was only 
observed during the breeding season in the toad (Scaia et al., 2015). 
In addition, germ cells have intense aromatase activity and are an 
important source of oestrogens (Levallet et al., 1998). Several stud-
ies have shown that E2 is important for sperm quality (Arkoun 
et al., 2014; Gautier et al., 2016; Müller et al., 2012; O'Shaugh-
nessy, 2014) and motility (Aquila & De Amicis, 2014). In this study, 
spermatozoa expressed GPER1 as observed in sand rat and human 
(Franco et al., 2011; Menad et al., 2017). Interestingly, ERα (oestro-
gen receptor α) knockout mice presented immature spermatozoa 
(Lubahn et al., 1993), and a high pressure was observed in seminif-
erous tubules caused by fluid excess leading to germ cell alteration 
(Eddy et al., 1996; Hess, 2000). In contrast, ERβ (oestrogen recep-
tor β) knockout mice displayed normal testis function, because an 
alternative transcript can replace the neutralized receptor (Antal 
et al., 2008). Nevertheless, GPER1 can also be involved in several 
pathogenesis of various cancer types, such as intratubular germ cell 
tumours, seminomas, embryonal carcinomas and teratomas, where 
its expression was investigated (Franco et al., 2011; Rago 
et al., 2011). In testicular germ cell carcinogenesis, GPER1 stimu-
lates cell proliferation through the activation of PKA/MAPK path-
ways, a non- genomic GPER- dependent mechanism (Bouskine 
et al., 2009; Chevalier et al., 2012). However, even though GPER1 is 
expressed in testicular stromal neoplasms such as Leydig and Ser-
toli cell tumours (Carpino et al., 2007; Rago et al., 2011), its activa-
tion induces cell apoptosis. Treatment with G- 1 (GPER1 agonist) 
activated intrinsic apoptotic mechanism ERK1/2 (Chimento 
et al., 2013).

Overall, although complex pictures emerge from these stud-
ies, the importance of oestrogens and their receptors in the reg-
ulation of fertility in males is clearly demonstrated. E2 stimulates 
testicular apoptosis during the reproductive season and influences 
steroidogenic enzymes in the toad Rhinella arenarum (Amphibia, 
Anura) (Scaia et al., 2015). Furthermore, E2 initiates spermatogen-
esis in photo- regressed adult males of the Siberian hamster (Pak 
et al., 2002). These results, in addition to our study about the ex-
pression pattern of GPER1 in the testis, may suggest that the regula-
tion of testicular steroidogenesis and spermatogenesis by E2 may be 
via the membrane receptor GPER1.

This study describes the histological changes and expression 
pattern of GPER1 in the testis of the seasonal breeder Gerbillus ger-
billus during the annual reproductive cycle. Our work can provide 
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more clarifications on the effect of seasonal fluctuations on the re-
productive system and GPER1 distribution in free- ranging animals 
that exert different adaptative behaviours to withstand the environ-
mental constraints. Hence, the histology of the testis, accurately, 
the seminiferous tubules morphology exhibited a significant atrophy 
during the resting season, reflecting the state of non- breeding activ-
ity during this period of time. Furthermore, our results, along with 
previous published studies on the expression of ESRs and GPER1, 
highlight season dependent oestrogen effects on testis physiology 
in Gerbillus gerbillus and Psammomys obesus. The influence of oes-
trogens via GPER1 and the classical ESRs (Menad et al., 2017) might 
be stimulatory during the breeding season and inhibitory during the 
resting season, controlling spermatogenesis either by modulating 
Sertoli cells role in spermatogenesis or by directly regulating germ 
cells proliferation and maturation. In addition, Leydig cells expressed 
GPER1 during both seasons, likely because these cells exert differ-
ential functions throughout the whole season, for example, to main-
tain minimal levels of circulating testosterone for the maintenance 
of territorial behaviours. Further studies are needed to clarify these 
issues. Nevertheless, studies about the histology of the testis, the 
morphology of the seminiferous tubules, in addition to exploring the 
different molecules expressed in the testis, can provide key details 
about the reproductive physiology in free- ranging animals as well 
as understanding the correlation between environmental conditions 
and animal reproduction.
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